Posted in Python onJune 04, 2020
在opencv中,特征检测、描述、匹配都有集成的函数。vector<DMatch> bestMatches;用来存储得到的匹配点对。那么如何提取出其中的坐标呢?
int index1, index2; for (int i = 0; i < bestMatches.size(); i++)//将匹配的特征点坐标赋给point { index1 = bestMatches.at(i).queryIdx; index2 = bestMatches.at(i).trainIdx; cout << keyImg1.at(index1).pt.x << " " << keyImg1.at(index1).pt.y << " " << keyImg2.at(index2).pt.x << " " << keyImg2.at(index2).pt.y << endl; }
补充知识:OpenCV 如何获取一个连通域中的所有坐标点
#include "stdafx.h" #include "cv.h" #include "highgui.h" #include "cxcore.h" int main(int argc, char* argv[]) { IplImage* img; img = cvLoadImage("D:\\OOTT\\WEEK5\\2.png"); IplImage* gray = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); cvCvtColor(img,gray,CV_BGR2GRAY); cvThreshold(gray,gray,128,255,CV_THRESH_BINARY); CvMemStorage* storage = cvCreateMemStorage(); CvSeq * first_contour = NULL; int Ncontour = cvFindContours(gray,storage,&first_contour,sizeof(CvContour),CV_RETR_LIST); //Ncontour为cvFindContours函数返回的轮廓个数 for(CvSeq* c = first_contour;c!= NULL;c=c->h_next) { // cvDrawContours(img,c,cvScalar(255,255,0),cvScalar(255,0,255),0,2,8); cvNamedWindow("contours",CV_WINDOW_AUTOSIZE); // cvShowImage("contours",img); for(int k = 0;k <c->total;++k) { CvPoint* p = CV_GET_SEQ_ELEM(CvPoint,c,k); printf("(%d,%d)\n",p->x,p->y); } CvRect rect; rect = cvBoundingRect(c,0); cvFloodFill(img,cvPoint(img->width/2,img->height/2),cvScalar(255,255,255),cvScalar(20),cvScalar(20),NULL,4,NULL); cvShowImage("contours",img); int Num[500][500]; for (int i=0;i<(img->height-5);i++) for (int j=0;j<(img->width-5);j++) { CvScalar S0; S0=cvGet2D(img,i,j); if(S0.val[0] == 255) Num[i][j]=1; else Num[i][j]=0; printf("(%d,%d)\n",i,j); } } cvWaitKey(0); cvReleaseImage(&img); cvReleaseImage(&gray); cvDestroyWindow("contours"); return 0; }
以上这篇使用opencv中匹配点对的坐标提取方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
使用opencv中匹配点对的坐标提取方式
- Author -
仙女阳声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@