Python+OpenCV实现图像的全景拼接


Posted in Python onMarch 05, 2020

本文实例为大家分享了Python+OpenCV实现图像的全景拼接的具体代码,供大家参考,具体内容如下

环境:python3.5.2 + openCV3.4

1.算法目的

将两张相同场景的场景图片进行全景拼接。

2.算法步骤

本算法基本步骤有以下几步:

步骤1:将图形先进行桶形矫正

没有进行桶形变换的图片效果可能会像以下这样:

Python+OpenCV实现图像的全景拼接

图片越多拼接可能就会越夸张。

Python+OpenCV实现图像的全景拼接

本算法是将图片进行桶形矫正。目的就是来缩减透视变换(Homography)之后图片产生的变形,从而使拼接图片变得畸形。

步骤2:特征点匹配

本算法使用的sift算法匹配,它具有旋转不变性和缩放不变性,具体原理在之后会补上一篇关于sift算法的文章,这里就不做详细介绍。

在匹配特征点的过程中,透视矩阵选取了4对特征点计算,公式为

Python+OpenCV实现图像的全景拼接

点的齐次坐标依赖于其尺度定义,因此矩阵H也仅依赖尺度定义,所以,单应性矩阵具有8个独立的自由度。

如果在选取的不正确的特征点,那么透视矩阵就可能计算错误,所以为了提高结果的鲁棒性,就要去除这些错误的特征点,而RANSAC方法就是用来删除这些错误的特征点。

**RANSAC:**用来找到正确模型来拟合带有噪声数据的迭代方法。基本思想:数据中包含正确的点和噪声点,合理的模型应该能够在描述正确数据点的同时摈弃噪声点。

RANSAC方法随机获取4对不同的特征匹配坐标,计算出透视矩阵H1,再将第二张图的特征匹配点经过这个矩阵H1映射到第一张图的坐标空间里,通过计算来验证这个H1矩阵是否满足绝大部分的特征点。
通过迭代多次,以满足最多特征匹配点的特征矩阵H作为结果。

这样正常情况就可以去除错误的特征点了,除非匹配错误的特征点比正确的还多。

下图是我在嘉庚图书馆旁拍摄的照片的特征点匹配。

Python+OpenCV实现图像的全景拼接

步骤3:利用得到的变换矩阵进行图片的拼接。

可以看出基本做到了无缝拼接。只是在色差上还是看得出衔接的部分存在。

Python+OpenCV实现图像的全景拼接

实现结果

我在宿舍里又多照了几组照片来实验:
室内宿舍场景的特征点匹配:

Python+OpenCV实现图像的全景拼接

拼接结果:

Python+OpenCV实现图像的全景拼接

在室内的效果根据结果来看效果也还可以。

我测试了宿舍里景深落差较大的两张图片:

特征点匹配:

Python+OpenCV实现图像的全景拼接

虽然距离较远,但是还是可以粗略的匹配到特征点。

拼接结果:

Python+OpenCV实现图像的全景拼接

从结果上来看可以看得出来,两张图片依然可以正确而粗略地拼接再一起,可以看得出是同一个区域。只是由于特征点不够,在细节上景深落差较大的还是没办法完美地拼接。

import numpy as np
import cv2 as cv
import imutils

class Stitcher:
 def __init__(self):
 self.isv3 = imutils.is_cv3()

 def stitch(self,imgs, ratio = 0.75, reprojThresh = 4.0, showMatches = False):
 print('A')
 (img2, img1) = imgs
 #获取关键点和描述符
 (kp1, des1) = self.detectAndDescribe(img1)
 (kp2, des2) = self.detectAndDescribe(img2)
 print(len(kp1),len(des1))
 print(len(kp2), len(des2))
 R = self.matchKeyPoints(kp1, kp2, des1, des2, ratio, reprojThresh)

 #如果没有足够的最佳匹配点,M为None
 if R is None:
 return None
 (good, M, mask) = R
 print(M)
 #对img1透视变换,M是ROI区域矩阵, 变换后的大小是(img1.w+img2.w, img1.h)
 result = cv.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
 #将img2的值赋给结果图像
 result[0:img2.shape[0], 0:img2.shape[1]] = img2

 #是否需要显示ROI区域
 if showMatches:
 vis = self.drawMatches1(img1, img2, kp1, kp2, good, mask)
 return (result, vis)

 return result


 def detectAndDescribe(self,img):
 print('B')
 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

 #检查我们使用的是否是penCV3.x
 if self.isv3:
 sift = cv.xfeatures2d.SIFT_create()
 (kps, des) = sift.detectAndCompute(img, None)
 else:
 sift = cv.FastFeatureDetector_create('SIFT')
 kps = sift.detect(gray)
 des = sift.compute(gray, kps)

 kps = np.float32([kp.pt for kp in kps]) # **********************************
 #返回关键点和描述符
 return (kps, des)

 def matchKeyPoints(self,kp1, kp2, des1, des2, ratio, reprojThresh):
 print('C')
 #初始化BF,因为使用的是SIFT ,所以使用默认参数
 matcher = cv.DescriptorMatcher_create('BruteForce')
 # bf = cv.BFMatcher()
 # matches = bf.knnMatch(des1, des2, k=2)
 matches = matcher.knnMatch(des1, des2, 2) #***********************************

 #获取理想匹配
 good = []
 for m in matches:
 if len(m) == 2 and m[0].distance < ratio * m[1].distance:
 good.append((m[0].trainIdx, m[0].queryIdx))

 print(len(good))
 #最少要有四个点才能做透视变换
 if len(good) > 4:
 #获取关键点的坐标
 # src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
 # dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
 src_pts = np.float32([kp1[i] for (_, i) in good])
 dst_pts = np.float32([kp2[i] for (i, _) in good])

 #通过两个图像的关键点计算变换矩阵
 (M, mask) = cv.findHomography(src_pts, dst_pts, cv.RANSAC, reprojThresh)

 #返回最佳匹配点、变换矩阵和掩模
 return (good, M, mask)
 #如果不满足最少四个 就返回None
 return None

 def drawMatches(img1, img2, kp1, kp2, matches, mask, M):
 # 获得原图像的高和宽
 h, w = img1.shape[:2]
 # 使用得到的变换矩阵对原图像的四个角进行变换,获得目标图像上对应的坐标
 pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1, 1, 2)
 dst = cv.perspectiveTransform(pts, M)
 matchesMask = mask.ravel().tolist()

 draw_params = dict(matchColor = (0, 255, 0),
  singlePointColor = None,
  matchesMask = matchesMask,
  flags = 2)
 img = cv.drawMatches(img1, kp1, img2, kp2, matches, None, **draw_params)

 return img

 def drawMatches1(self,img1, img2, kp1, kp2, metches,mask):
 print('D')
 (hA,wA) = img1.shape[:2]
 (hB,wB) = img2.shape[:2]
 vis = np.zeros((max(hA,hB), wA+wB, 3), dtype='uint8')
 vis[0:hA, 0:wA] = img1
 vis[0:hB, wA:] = img2
 for ((trainIdx, queryIdx),s) in zip(metches, mask):
 if s == 1:
 ptA = (int(kp1[queryIdx][0]), int(kp1[queryIdx][1]))
 ptB = (int(kp2[trainIdx][0])+wA, int(kp2[trainIdx][1]))
 cv.line(vis, ptA, ptB, (0, 255, 0), 1)

 return vis

# def show():
# img1 = cv.imread('image/sedona_left_01.png')
# img2 = cv.imread('image/sedona_right_01.png')
# img1 = imutils.resize(img1, width=400)
# img2 = imutils.resize(img2, width=400)
#
# stitcher = cv.Stitcher()
# (result, vis) = stitcher.stitch([img1, img2])
# # (result, vis) = stitch([img1,img2], showMatches=True)
#
# cv.imshow('image A', img1)
# cv.imshow('image B', img2)
# cv.imshow('keyPoint Matches', vis)
# cv.imshow('Result', result)
#
# cv.waitKey(0)
# cv.destroyAllWindows()
# show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中的两个内置模块介绍
Apr 05 Python
Python中.py文件打包成exe可执行文件详解
Mar 22 Python
python实现微信跳一跳辅助工具步骤详解
Jan 04 Python
PyQt5每天必学之布局管理
Apr 19 Python
Scrapy使用的基本流程与实例讲解
Oct 21 Python
pytorch 改变tensor尺寸的实现
Jan 03 Python
基于python3抓取pinpoint应用信息入库
Jan 08 Python
Python的in,is和id函数代码实例
Apr 18 Python
用Python在Excel里画出蒙娜丽莎的方法示例
Apr 28 Python
Python爬虫JSON及JSONPath运行原理详解
Jun 04 Python
解决TensorFlow训练模型及保存数量限制的问题
Mar 03 Python
教你如何用python开发一款数字推盘小游戏
Apr 14 Python
Python对象的属性访问过程详解
Mar 05 #Python
Python安装OpenCV的示例代码
Mar 05 #Python
opencv python在视屏上截图功能的实现
Mar 05 #Python
谈谈Python:为什么类中的私有属性可以在外部赋值并访问
Mar 05 #Python
python如何将两张图片生成为全景图片
Mar 05 #Python
Python 定义只读属性的实现方式
Mar 05 #Python
Pycharm中import torch报错的快速解决方法
Mar 05 #Python
You might like
php中用于检测一个地理IP地址是否可用的代码
2012/02/19 PHP
深入array multisort排序原理的详解
2013/06/18 PHP
ThinkPHP页面跳转success与error方法概述
2014/06/25 PHP
PHP实现Google plus的好友拖拽分组效果
2016/10/21 PHP
PHP中的use关键字及文件的加载详解
2016/11/28 PHP
YII框架模块化处理操作示例
2019/04/26 PHP
JS分页效果示例
2013/10/11 Javascript
jQuery链使用指南
2015/01/20 Javascript
JavaScript使用指针操作实现约瑟夫问题实例
2015/04/07 Javascript
使用AOP改善javascript代码
2015/05/01 Javascript
HTML页面定时跳转方法解析(2种任选)
2016/12/22 Javascript
EasyUi 打开对话框后控件赋值及赋值后不显示的问题解决办法
2017/01/19 Javascript
AngularJS动态菜单操作指令
2017/04/25 Javascript
Bootstrap Table列宽拖动的方法
2018/08/15 Javascript
vue移动端html5页面根据屏幕适配的四种解决方法
2018/10/19 Javascript
javascript function(函数类型)使用与注意事项小结
2019/06/10 Javascript
vue-cli3使用mock数据的方法分析
2020/03/16 Javascript
Python 条件判断的缩写方法
2008/09/06 Python
Python EOL while scanning string literal问题解决方法
2020/09/18 Python
利用Python脚本生成sitemap.xml的实现方法
2017/01/31 Python
Python实现的简单模板引擎功能示例
2017/09/02 Python
Python实现把类当做字典来访问
2019/12/16 Python
Pytorch实现神经网络的分类方式
2020/01/08 Python
Python变量、数据类型、数据类型转换相关函数用法实例详解
2020/01/09 Python
解决Python中报错TypeError: must be str, not bytes问题
2020/04/07 Python
python中子类与父类的关系基础知识点
2021/02/02 Python
Python实现粒子群算法的示例
2021/02/14 Python
HTML5使用Audio标签实现歌词同步的效果
2016/03/17 HTML / CSS
菲律宾领先的在线时尚商店:Zalora菲律宾
2018/02/08 全球购物
MYPROTEIN澳大利亚官方网站:欧洲运动营养品牌
2019/06/26 全球购物
J2EE模式面试题
2016/10/11 面试题
学生会部长竞选稿
2015/11/19 职场文书
pytorch加载预训练模型与自己模型不匹配的解决方案
2021/05/13 Python
vue+elementui 实现新增和修改共用一个弹框的完整代码
2021/06/08 Vue.js
anaconda python3.8安装后降级
2021/06/11 Python
Win11如何启用启动修复 ? Win11执行启动修复的三种方法
2022/04/08 数码科技