Python+OpenCV实现图像的全景拼接


Posted in Python onMarch 05, 2020

本文实例为大家分享了Python+OpenCV实现图像的全景拼接的具体代码,供大家参考,具体内容如下

环境:python3.5.2 + openCV3.4

1.算法目的

将两张相同场景的场景图片进行全景拼接。

2.算法步骤

本算法基本步骤有以下几步:

步骤1:将图形先进行桶形矫正

没有进行桶形变换的图片效果可能会像以下这样:

Python+OpenCV实现图像的全景拼接

图片越多拼接可能就会越夸张。

Python+OpenCV实现图像的全景拼接

本算法是将图片进行桶形矫正。目的就是来缩减透视变换(Homography)之后图片产生的变形,从而使拼接图片变得畸形。

步骤2:特征点匹配

本算法使用的sift算法匹配,它具有旋转不变性和缩放不变性,具体原理在之后会补上一篇关于sift算法的文章,这里就不做详细介绍。

在匹配特征点的过程中,透视矩阵选取了4对特征点计算,公式为

Python+OpenCV实现图像的全景拼接

点的齐次坐标依赖于其尺度定义,因此矩阵H也仅依赖尺度定义,所以,单应性矩阵具有8个独立的自由度。

如果在选取的不正确的特征点,那么透视矩阵就可能计算错误,所以为了提高结果的鲁棒性,就要去除这些错误的特征点,而RANSAC方法就是用来删除这些错误的特征点。

**RANSAC:**用来找到正确模型来拟合带有噪声数据的迭代方法。基本思想:数据中包含正确的点和噪声点,合理的模型应该能够在描述正确数据点的同时摈弃噪声点。

RANSAC方法随机获取4对不同的特征匹配坐标,计算出透视矩阵H1,再将第二张图的特征匹配点经过这个矩阵H1映射到第一张图的坐标空间里,通过计算来验证这个H1矩阵是否满足绝大部分的特征点。
通过迭代多次,以满足最多特征匹配点的特征矩阵H作为结果。

这样正常情况就可以去除错误的特征点了,除非匹配错误的特征点比正确的还多。

下图是我在嘉庚图书馆旁拍摄的照片的特征点匹配。

Python+OpenCV实现图像的全景拼接

步骤3:利用得到的变换矩阵进行图片的拼接。

可以看出基本做到了无缝拼接。只是在色差上还是看得出衔接的部分存在。

Python+OpenCV实现图像的全景拼接

实现结果

我在宿舍里又多照了几组照片来实验:
室内宿舍场景的特征点匹配:

Python+OpenCV实现图像的全景拼接

拼接结果:

Python+OpenCV实现图像的全景拼接

在室内的效果根据结果来看效果也还可以。

我测试了宿舍里景深落差较大的两张图片:

特征点匹配:

Python+OpenCV实现图像的全景拼接

虽然距离较远,但是还是可以粗略的匹配到特征点。

拼接结果:

Python+OpenCV实现图像的全景拼接

从结果上来看可以看得出来,两张图片依然可以正确而粗略地拼接再一起,可以看得出是同一个区域。只是由于特征点不够,在细节上景深落差较大的还是没办法完美地拼接。

import numpy as np
import cv2 as cv
import imutils

class Stitcher:
 def __init__(self):
 self.isv3 = imutils.is_cv3()

 def stitch(self,imgs, ratio = 0.75, reprojThresh = 4.0, showMatches = False):
 print('A')
 (img2, img1) = imgs
 #获取关键点和描述符
 (kp1, des1) = self.detectAndDescribe(img1)
 (kp2, des2) = self.detectAndDescribe(img2)
 print(len(kp1),len(des1))
 print(len(kp2), len(des2))
 R = self.matchKeyPoints(kp1, kp2, des1, des2, ratio, reprojThresh)

 #如果没有足够的最佳匹配点,M为None
 if R is None:
 return None
 (good, M, mask) = R
 print(M)
 #对img1透视变换,M是ROI区域矩阵, 变换后的大小是(img1.w+img2.w, img1.h)
 result = cv.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
 #将img2的值赋给结果图像
 result[0:img2.shape[0], 0:img2.shape[1]] = img2

 #是否需要显示ROI区域
 if showMatches:
 vis = self.drawMatches1(img1, img2, kp1, kp2, good, mask)
 return (result, vis)

 return result


 def detectAndDescribe(self,img):
 print('B')
 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

 #检查我们使用的是否是penCV3.x
 if self.isv3:
 sift = cv.xfeatures2d.SIFT_create()
 (kps, des) = sift.detectAndCompute(img, None)
 else:
 sift = cv.FastFeatureDetector_create('SIFT')
 kps = sift.detect(gray)
 des = sift.compute(gray, kps)

 kps = np.float32([kp.pt for kp in kps]) # **********************************
 #返回关键点和描述符
 return (kps, des)

 def matchKeyPoints(self,kp1, kp2, des1, des2, ratio, reprojThresh):
 print('C')
 #初始化BF,因为使用的是SIFT ,所以使用默认参数
 matcher = cv.DescriptorMatcher_create('BruteForce')
 # bf = cv.BFMatcher()
 # matches = bf.knnMatch(des1, des2, k=2)
 matches = matcher.knnMatch(des1, des2, 2) #***********************************

 #获取理想匹配
 good = []
 for m in matches:
 if len(m) == 2 and m[0].distance < ratio * m[1].distance:
 good.append((m[0].trainIdx, m[0].queryIdx))

 print(len(good))
 #最少要有四个点才能做透视变换
 if len(good) > 4:
 #获取关键点的坐标
 # src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
 # dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
 src_pts = np.float32([kp1[i] for (_, i) in good])
 dst_pts = np.float32([kp2[i] for (i, _) in good])

 #通过两个图像的关键点计算变换矩阵
 (M, mask) = cv.findHomography(src_pts, dst_pts, cv.RANSAC, reprojThresh)

 #返回最佳匹配点、变换矩阵和掩模
 return (good, M, mask)
 #如果不满足最少四个 就返回None
 return None

 def drawMatches(img1, img2, kp1, kp2, matches, mask, M):
 # 获得原图像的高和宽
 h, w = img1.shape[:2]
 # 使用得到的变换矩阵对原图像的四个角进行变换,获得目标图像上对应的坐标
 pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1, 1, 2)
 dst = cv.perspectiveTransform(pts, M)
 matchesMask = mask.ravel().tolist()

 draw_params = dict(matchColor = (0, 255, 0),
  singlePointColor = None,
  matchesMask = matchesMask,
  flags = 2)
 img = cv.drawMatches(img1, kp1, img2, kp2, matches, None, **draw_params)

 return img

 def drawMatches1(self,img1, img2, kp1, kp2, metches,mask):
 print('D')
 (hA,wA) = img1.shape[:2]
 (hB,wB) = img2.shape[:2]
 vis = np.zeros((max(hA,hB), wA+wB, 3), dtype='uint8')
 vis[0:hA, 0:wA] = img1
 vis[0:hB, wA:] = img2
 for ((trainIdx, queryIdx),s) in zip(metches, mask):
 if s == 1:
 ptA = (int(kp1[queryIdx][0]), int(kp1[queryIdx][1]))
 ptB = (int(kp2[trainIdx][0])+wA, int(kp2[trainIdx][1]))
 cv.line(vis, ptA, ptB, (0, 255, 0), 1)

 return vis

# def show():
# img1 = cv.imread('image/sedona_left_01.png')
# img2 = cv.imread('image/sedona_right_01.png')
# img1 = imutils.resize(img1, width=400)
# img2 = imutils.resize(img2, width=400)
#
# stitcher = cv.Stitcher()
# (result, vis) = stitcher.stitch([img1, img2])
# # (result, vis) = stitch([img1,img2], showMatches=True)
#
# cv.imshow('image A', img1)
# cv.imshow('image B', img2)
# cv.imshow('keyPoint Matches', vis)
# cv.imshow('Result', result)
#
# cv.waitKey(0)
# cv.destroyAllWindows()
# show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中使用PIL库实现图片高斯模糊实例
Feb 08 Python
Python计算已经过去多少个周末的方法
Jul 25 Python
python自带的http模块详解
Nov 06 Python
利用 Monkey 命令操作屏幕快速滑动
Dec 07 Python
python抓取京东小米8手机配置信息
Nov 13 Python
Python小工具之消耗系统指定大小内存的方法
Dec 03 Python
Python分析彩票记录并预测中奖号码过程详解
Jul 09 Python
django基于cors解决跨域请求问题详解
Aug 06 Python
Python从列表推导到zip()函数的5种技巧总结
Oct 23 Python
tensorflow中tf.slice和tf.gather切片函数的使用
Jan 19 Python
Python如何使用正则表达式爬取京东商品信息
Jun 01 Python
浅谈Python协程
Jun 17 Python
Python对象的属性访问过程详解
Mar 05 #Python
Python安装OpenCV的示例代码
Mar 05 #Python
opencv python在视屏上截图功能的实现
Mar 05 #Python
谈谈Python:为什么类中的私有属性可以在外部赋值并访问
Mar 05 #Python
python如何将两张图片生成为全景图片
Mar 05 #Python
Python 定义只读属性的实现方式
Mar 05 #Python
Pycharm中import torch报错的快速解决方法
Mar 05 #Python
You might like
phpmyadmin 访问被拒绝的真实原因
2009/06/15 PHP
PHP操作MySQL事务实例
2014/11/05 PHP
thinkphp3.2.0 setInc方法 源码全面解析
2018/01/29 PHP
datagrid框架的删除添加与修改
2013/04/08 Javascript
javascript教程之不完整的继承(js原型链)
2014/01/13 Javascript
深入分析原生JavaScript事件
2014/12/29 Javascript
javascript 事件处理示例分享
2014/12/31 Javascript
js+html5实现canvas绘制简单矩形的方法
2015/06/05 Javascript
angularjs在ng-repeat中使用ng-model遇到的问题
2016/01/21 Javascript
JavaScript 轮播图和自定义滚动条配合鼠标滚轮分享代码贴
2016/10/28 Javascript
Bootstrap基本插件学习笔记之按钮(21)
2016/12/08 Javascript
Javascript中prototype与__proto__的关系详解
2018/03/11 Javascript
Vue 重置组件到初始状态的方法示例
2018/10/10 Javascript
Vue实现点击按钮复制文本内容的例子
2019/11/09 Javascript
Angular 多模块项目构建过程
2020/02/13 Javascript
分享一款超好用的JavaScript 打包压缩工具
2020/04/26 Javascript
Python中os.path用法分析
2015/01/15 Python
Python简单定义与使用字典dict的方法示例
2017/07/25 Python
Django 导出 Excel 代码的实例详解
2017/08/11 Python
pandas把所有大于0的数设置为1的方法
2019/01/26 Python
python字符串替换第一个字符串的方法
2019/06/26 Python
Python实现的统计文章单词次数功能示例
2019/07/08 Python
python的移位操作实现详解
2019/08/21 Python
Django使用uwsgi部署时的配置以及django日志文件的处理方法
2019/08/30 Python
python实现读取类别频数数据画水平条形图案例
2020/04/24 Python
Django 实现 Websocket 广播、点对点发送消息的代码
2020/06/03 Python
python利用proxybroker构建爬虫免费IP代理池的实现
2021/02/21 Python
Ticketmaster德国票务网站:购买音乐会和体育等门票
2016/11/14 全球购物
护理专科毕业推荐信
2013/11/10 职场文书
3分钟英语演讲稿
2014/04/29 职场文书
高中学校对照检查材料
2014/08/31 职场文书
2014年团委工作总结
2014/11/13 职场文书
2014七年级班主任工作总结
2014/12/05 职场文书
综合办公室岗位职责
2015/04/11 职场文书
幽默导游词应该怎么写?
2019/08/26 职场文书
实操Python爬取觅知网素材图片示例
2021/11/27 Python