Python+OpenCV实现图像的全景拼接


Posted in Python onMarch 05, 2020

本文实例为大家分享了Python+OpenCV实现图像的全景拼接的具体代码,供大家参考,具体内容如下

环境:python3.5.2 + openCV3.4

1.算法目的

将两张相同场景的场景图片进行全景拼接。

2.算法步骤

本算法基本步骤有以下几步:

步骤1:将图形先进行桶形矫正

没有进行桶形变换的图片效果可能会像以下这样:

Python+OpenCV实现图像的全景拼接

图片越多拼接可能就会越夸张。

Python+OpenCV实现图像的全景拼接

本算法是将图片进行桶形矫正。目的就是来缩减透视变换(Homography)之后图片产生的变形,从而使拼接图片变得畸形。

步骤2:特征点匹配

本算法使用的sift算法匹配,它具有旋转不变性和缩放不变性,具体原理在之后会补上一篇关于sift算法的文章,这里就不做详细介绍。

在匹配特征点的过程中,透视矩阵选取了4对特征点计算,公式为

Python+OpenCV实现图像的全景拼接

点的齐次坐标依赖于其尺度定义,因此矩阵H也仅依赖尺度定义,所以,单应性矩阵具有8个独立的自由度。

如果在选取的不正确的特征点,那么透视矩阵就可能计算错误,所以为了提高结果的鲁棒性,就要去除这些错误的特征点,而RANSAC方法就是用来删除这些错误的特征点。

**RANSAC:**用来找到正确模型来拟合带有噪声数据的迭代方法。基本思想:数据中包含正确的点和噪声点,合理的模型应该能够在描述正确数据点的同时摈弃噪声点。

RANSAC方法随机获取4对不同的特征匹配坐标,计算出透视矩阵H1,再将第二张图的特征匹配点经过这个矩阵H1映射到第一张图的坐标空间里,通过计算来验证这个H1矩阵是否满足绝大部分的特征点。
通过迭代多次,以满足最多特征匹配点的特征矩阵H作为结果。

这样正常情况就可以去除错误的特征点了,除非匹配错误的特征点比正确的还多。

下图是我在嘉庚图书馆旁拍摄的照片的特征点匹配。

Python+OpenCV实现图像的全景拼接

步骤3:利用得到的变换矩阵进行图片的拼接。

可以看出基本做到了无缝拼接。只是在色差上还是看得出衔接的部分存在。

Python+OpenCV实现图像的全景拼接

实现结果

我在宿舍里又多照了几组照片来实验:
室内宿舍场景的特征点匹配:

Python+OpenCV实现图像的全景拼接

拼接结果:

Python+OpenCV实现图像的全景拼接

在室内的效果根据结果来看效果也还可以。

我测试了宿舍里景深落差较大的两张图片:

特征点匹配:

Python+OpenCV实现图像的全景拼接

虽然距离较远,但是还是可以粗略的匹配到特征点。

拼接结果:

Python+OpenCV实现图像的全景拼接

从结果上来看可以看得出来,两张图片依然可以正确而粗略地拼接再一起,可以看得出是同一个区域。只是由于特征点不够,在细节上景深落差较大的还是没办法完美地拼接。

import numpy as np
import cv2 as cv
import imutils

class Stitcher:
 def __init__(self):
 self.isv3 = imutils.is_cv3()

 def stitch(self,imgs, ratio = 0.75, reprojThresh = 4.0, showMatches = False):
 print('A')
 (img2, img1) = imgs
 #获取关键点和描述符
 (kp1, des1) = self.detectAndDescribe(img1)
 (kp2, des2) = self.detectAndDescribe(img2)
 print(len(kp1),len(des1))
 print(len(kp2), len(des2))
 R = self.matchKeyPoints(kp1, kp2, des1, des2, ratio, reprojThresh)

 #如果没有足够的最佳匹配点,M为None
 if R is None:
 return None
 (good, M, mask) = R
 print(M)
 #对img1透视变换,M是ROI区域矩阵, 变换后的大小是(img1.w+img2.w, img1.h)
 result = cv.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
 #将img2的值赋给结果图像
 result[0:img2.shape[0], 0:img2.shape[1]] = img2

 #是否需要显示ROI区域
 if showMatches:
 vis = self.drawMatches1(img1, img2, kp1, kp2, good, mask)
 return (result, vis)

 return result


 def detectAndDescribe(self,img):
 print('B')
 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

 #检查我们使用的是否是penCV3.x
 if self.isv3:
 sift = cv.xfeatures2d.SIFT_create()
 (kps, des) = sift.detectAndCompute(img, None)
 else:
 sift = cv.FastFeatureDetector_create('SIFT')
 kps = sift.detect(gray)
 des = sift.compute(gray, kps)

 kps = np.float32([kp.pt for kp in kps]) # **********************************
 #返回关键点和描述符
 return (kps, des)

 def matchKeyPoints(self,kp1, kp2, des1, des2, ratio, reprojThresh):
 print('C')
 #初始化BF,因为使用的是SIFT ,所以使用默认参数
 matcher = cv.DescriptorMatcher_create('BruteForce')
 # bf = cv.BFMatcher()
 # matches = bf.knnMatch(des1, des2, k=2)
 matches = matcher.knnMatch(des1, des2, 2) #***********************************

 #获取理想匹配
 good = []
 for m in matches:
 if len(m) == 2 and m[0].distance < ratio * m[1].distance:
 good.append((m[0].trainIdx, m[0].queryIdx))

 print(len(good))
 #最少要有四个点才能做透视变换
 if len(good) > 4:
 #获取关键点的坐标
 # src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
 # dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
 src_pts = np.float32([kp1[i] for (_, i) in good])
 dst_pts = np.float32([kp2[i] for (i, _) in good])

 #通过两个图像的关键点计算变换矩阵
 (M, mask) = cv.findHomography(src_pts, dst_pts, cv.RANSAC, reprojThresh)

 #返回最佳匹配点、变换矩阵和掩模
 return (good, M, mask)
 #如果不满足最少四个 就返回None
 return None

 def drawMatches(img1, img2, kp1, kp2, matches, mask, M):
 # 获得原图像的高和宽
 h, w = img1.shape[:2]
 # 使用得到的变换矩阵对原图像的四个角进行变换,获得目标图像上对应的坐标
 pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1, 1, 2)
 dst = cv.perspectiveTransform(pts, M)
 matchesMask = mask.ravel().tolist()

 draw_params = dict(matchColor = (0, 255, 0),
  singlePointColor = None,
  matchesMask = matchesMask,
  flags = 2)
 img = cv.drawMatches(img1, kp1, img2, kp2, matches, None, **draw_params)

 return img

 def drawMatches1(self,img1, img2, kp1, kp2, metches,mask):
 print('D')
 (hA,wA) = img1.shape[:2]
 (hB,wB) = img2.shape[:2]
 vis = np.zeros((max(hA,hB), wA+wB, 3), dtype='uint8')
 vis[0:hA, 0:wA] = img1
 vis[0:hB, wA:] = img2
 for ((trainIdx, queryIdx),s) in zip(metches, mask):
 if s == 1:
 ptA = (int(kp1[queryIdx][0]), int(kp1[queryIdx][1]))
 ptB = (int(kp2[trainIdx][0])+wA, int(kp2[trainIdx][1]))
 cv.line(vis, ptA, ptB, (0, 255, 0), 1)

 return vis

# def show():
# img1 = cv.imread('image/sedona_left_01.png')
# img2 = cv.imread('image/sedona_right_01.png')
# img1 = imutils.resize(img1, width=400)
# img2 = imutils.resize(img2, width=400)
#
# stitcher = cv.Stitcher()
# (result, vis) = stitcher.stitch([img1, img2])
# # (result, vis) = stitch([img1,img2], showMatches=True)
#
# cv.imshow('image A', img1)
# cv.imshow('image B', img2)
# cv.imshow('keyPoint Matches', vis)
# cv.imshow('Result', result)
#
# cv.waitKey(0)
# cv.destroyAllWindows()
# show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python中使用CasperJS获取JS渲染生成的HTML内容的教程
Apr 09 Python
Python中字符串的常见操作技巧总结
Jul 28 Python
解决python读取几千万行的大表内存问题
Jun 26 Python
python实现socket+threading处理多连接的方法
Jul 23 Python
Python OpenCV调用摄像头检测人脸并截图
Aug 20 Python
在Python中获取操作系统的进程信息
Aug 27 Python
python关闭占用端口方式
Dec 17 Python
解决Python import docx出错DLL load failed的问题
Feb 13 Python
使用Keras加载含有自定义层或函数的模型操作
Jun 10 Python
详解Python多线程下的list
Jul 03 Python
提取视频中的音频 Python只需要三行代码!
May 10 Python
上帝为你开了一扇窗之Tkinter常用函数详解
Jun 02 Python
Python对象的属性访问过程详解
Mar 05 #Python
Python安装OpenCV的示例代码
Mar 05 #Python
opencv python在视屏上截图功能的实现
Mar 05 #Python
谈谈Python:为什么类中的私有属性可以在外部赋值并访问
Mar 05 #Python
python如何将两张图片生成为全景图片
Mar 05 #Python
Python 定义只读属性的实现方式
Mar 05 #Python
Pycharm中import torch报错的快速解决方法
Mar 05 #Python
You might like
CodeIgniter生成网站sitemap地图的方法
2013/11/13 PHP
php制作中间带自己定义图片二维码的方法
2014/01/27 PHP
php随机生成数字字母组合的方法
2015/03/18 PHP
PHP实现的mysql主从数据库状态检测功能示例
2017/07/20 PHP
php单元测试phpunit入门实例教程
2017/11/17 PHP
laravel框架路由分组,中间件,命名空间,子域名,路由前缀实例分析
2020/02/18 PHP
Javascript 构造函数 实例分析
2008/11/26 Javascript
js 返回时间戳所对应的具体时间
2010/07/20 Javascript
JQuery获取文本框中字符长度的代码
2011/09/29 Javascript
innerText和textContent对比及使用介绍
2013/02/27 Javascript
jquery对dom的操作常用方法整理
2013/06/25 Javascript
html5 canvas js(数字时钟)实例代码
2013/12/23 Javascript
jQuery仿360导航页图标拖动排序效果代码分享
2015/08/24 Javascript
jQuery鼠标事件汇总
2015/08/30 Javascript
全面介绍javascript实用技巧及单竖杠
2016/07/18 Javascript
JS搜狐面试题分析
2016/12/16 Javascript
JavaScript实现修改伪类样式
2017/11/27 Javascript
JS设计模式之状态模式概念与用法分析
2018/02/05 Javascript
webpack4 css打包压缩问题的解决
2018/05/18 Javascript
Vue.js中的组件系统
2019/05/30 Javascript
详解Webpack4多页应用打包方案
2020/07/16 Javascript
python实现k均值算法示例(k均值聚类算法)
2014/03/16 Python
python获取本地计算机名字的方法
2015/04/29 Python
python中使用zip函数出现错误的原因
2018/09/28 Python
CSS3的RGBA中关于整数和百分比值的转换
2015/08/04 HTML / CSS
松下电器美国官方商店:Panasonic美国
2016/10/14 全球购物
BannerBuzz加拿大:在线定制横幅印刷、广告和标志
2020/03/10 全球购物
通往英国高街的商店橱窗:Down Your High Street
2020/07/19 全球购物
《彭德怀和他的大黑骡子》教学反思
2014/04/12 职场文书
养成教育经验材料
2014/05/26 职场文书
2014年节能减排工作总结
2014/12/06 职场文书
2014年创先争优工作总结
2014/12/11 职场文书
2016年“5.12”护士节致辞
2015/07/31 职场文书
小学一年级语文教学反思
2016/03/03 职场文书
html5移动端禁止长按图片保存的实现
2021/04/20 HTML / CSS
把77A收信机改造成收音机
2022/04/05 无线电