PyTorch搭建一维线性回归模型(二)


Posted in Python onMay 22, 2019

PyTorch基础入门二:PyTorch搭建一维线性回归模型

1)一维线性回归模型的理论基础

给定数据集PyTorch搭建一维线性回归模型(二),线性回归希望能够优化出一个好的函数PyTorch搭建一维线性回归模型(二),使得PyTorch搭建一维线性回归模型(二)能够和PyTorch搭建一维线性回归模型(二)尽可能接近。

如何才能学习到参数PyTorch搭建一维线性回归模型(二)PyTorch搭建一维线性回归模型(二)呢?很简单,只需要确定如何衡量PyTorch搭建一维线性回归模型(二)PyTorch搭建一维线性回归模型(二)之间的差别,我们一般通过损失函数(Loss Funciton)来衡量:PyTorch搭建一维线性回归模型(二)。取平方是因为距离有正有负,我们于是将它们变为全是正的。这就是著名的均方误差。我们要做的事情就是希望能够找到PyTorch搭建一维线性回归模型(二)PyTorch搭建一维线性回归模型(二),使得:

PyTorch搭建一维线性回归模型(二)

PyTorch搭建一维线性回归模型(二)

均方差误差非常直观,也有着很好的几何意义,对应了常用的欧式距离。现在要求解这个连续函数的最小值,我们很自然想到的方法就是求它的偏导数,让它的偏导数等于0来估计它的参数,即:

PyTorch搭建一维线性回归模型(二)

PyTorch搭建一维线性回归模型(二)

求解以上两式,我们就可以得到最优解。

2)代码实现

首先,我们需要“制造”出一些数据集:

import torch
import matplotlib.pyplot as plt
 
 
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = 3*x + 10 + torch.rand(x.size())
# 上面这行代码是制造出接近y=3x+10的数据集,后面加上torch.rand()函数制造噪音
 
# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

我们想要拟合的一维回归模型是PyTorch搭建一维线性回归模型(二)。上面制造的数据集也是比较接近这个模型的,但是为了达到学习效果,人为地加上了torch.rand()值增加一些干扰。

上面人为制造出来的数据集的分布如下:

PyTorch搭建一维线性回归模型(二)

有了数据,我们就要开始定义我们的模型,这里定义的是一个输入层和输出层都只有一维的模型,并且使用了“先判断后使用”的基本结构来合理使用GPU加速。

class LinearRegression(nn.Module):
  def __init__(self):
    super(LinearRegression, self).__init__()
    self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1
  def forward(self, x):
    out = self.linear(x)
    return out
 
if torch.cuda.is_available():
  model = LinearRegression().cuda()
else:
  model = LinearRegression()

然后我们定义出损失函数和优化函数,这里使用均方误差作为损失函数,使用梯度下降进行优化:

criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)

接下来,开始进行模型的训练。

num_epochs = 1000
for epoch in range(num_epochs):
  if torch.cuda.is_available():
    inputs = Variable(x).cuda()
    target = Variable(y).cuda()
  else:
    inputs = Variable(x)
    target = Variable(y)
 
  # 向前传播
  out = model(inputs)
  loss = criterion(out, target)
 
  # 向后传播
  optimizer.zero_grad() # 注意每次迭代都需要清零
  loss.backward()
  optimizer.step()
 
  if (epoch+1) %20 == 0:
    print('Epoch[{}/{}], loss:{:.6f}'.format(epoch+1, num_epochs, loss.data[0]))

首先定义了迭代的次数,这里为1000次,先向前传播计算出损失函数,然后向后传播计算梯度,这里需要注意的是,每次计算梯度前都要记得将梯度归零,不然梯度会累加到一起造成结果不收敛。为了便于看到结果,每隔一段时间输出当前的迭代轮数和损失函数。

接下来,我们通过model.eval()函数将模型变为测试模式,然后将数据放入模型中进行预测。最后,通过画图工具matplotlib看一下我们拟合的结果,代码如下:

model.eval()
if torch.cuda.is_available():
  predict = model(Variable(x).cuda())
  predict = predict.data.cpu().numpy()
else:
  predict = model(Variable(x))
  predict = predict.data.numpy()
plt.plot(x.numpy(), y.numpy(), 'ro', label='Original Data')
plt.plot(x.numpy(), predict, label='Fitting Line')
plt.show()

其拟合结果如下图:

PyTorch搭建一维线性回归模型(二)

附上完整代码:

# !/usr/bin/python
# coding: utf8
# @Time  : 2018-07-28 18:40
# @Author : Liam
# @Email  : luyu.real@qq.com
# @Software: PyCharm
#            .::::.
#           .::::::::.
#           :::::::::::
#         ..:::::::::::'
#        '::::::::::::'
#         .::::::::::
#      '::::::::::::::..
#         ..::::::::::::.
#        ``::::::::::::::::
#        ::::``:::::::::'    .:::.
#        ::::'  ':::::'    .::::::::.
#       .::::'   ::::   .:::::::'::::.
#      .:::'    ::::: .:::::::::' ':::::.
#      .::'    :::::.:::::::::'   ':::::.
#     .::'     ::::::::::::::'     ``::::.
#   ...:::      ::::::::::::'       ``::.
#   ```` ':.     ':::::::::'         ::::..
#            '.:::::'          ':'````..
#           美女保佑 永无BUG
 
import torch
from torch.autograd import Variable
import numpy as np
import random
import matplotlib.pyplot as plt
from torch import nn
 
 
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = 3*x + 10 + torch.rand(x.size())
# 上面这行代码是制造出接近y=3x+10的数据集,后面加上torch.rand()函数制造噪音
 
# 画图
# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
class LinearRegression(nn.Module):
  def __init__(self):
    super(LinearRegression, self).__init__()
    self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1
  def forward(self, x):
    out = self.linear(x)
    return out
 
if torch.cuda.is_available():
  model = LinearRegression().cuda()
else:
  model = LinearRegression()
 
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
 
num_epochs = 1000
for epoch in range(num_epochs):
  if torch.cuda.is_available():
    inputs = Variable(x).cuda()
    target = Variable(y).cuda()
  else:
    inputs = Variable(x)
    target = Variable(y)
 
  # 向前传播
  out = model(inputs)
  loss = criterion(out, target)
 
  # 向后传播
  optimizer.zero_grad() # 注意每次迭代都需要清零
  loss.backward()
  optimizer.step()
 
  if (epoch+1) %20 == 0:
    print('Epoch[{}/{}], loss:{:.6f}'.format(epoch+1, num_epochs, loss.data[0]))
model.eval()
if torch.cuda.is_available():
  predict = model(Variable(x).cuda())
  predict = predict.data.cpu().numpy()
else:
  predict = model(Variable(x))
  predict = predict.data.numpy()
plt.plot(x.numpy(), y.numpy(), 'ro', label='Original Data')
plt.plot(x.numpy(), predict, label='Fitting Line')
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 图片验证码代码分享
Jul 04 Python
横向对比分析Python解析XML的四种方式
Mar 30 Python
Python3下错误AttributeError: ‘dict’ object has no attribute’iteritems‘的分析与解决
Jul 06 Python
python解决pandas处理缺失值为空字符串的问题
Apr 08 Python
Python简单实现网页内容抓取功能示例
Jun 07 Python
Linux下Pycharm、Anaconda环境配置及使用踩坑
Dec 19 Python
基于python实现学生信息管理系统
Nov 22 Python
python创建子类的方法分析
Nov 28 Python
如何更改 pandas dataframe 中两列的位置
Dec 27 Python
在Tensorflow中实现梯度下降法更新参数值
Jan 23 Python
Python如何把Spark数据写入ElasticSearch
Apr 18 Python
pytorch 把图片数据转化成tensor的操作
Mar 04 Python
PyTorch基本数据类型(一)
May 22 #Python
PyTorch搭建多项式回归模型(三)
May 22 #Python
pytorch使用Variable实现线性回归
May 21 #Python
Python面向对象进阶学习
May 21 #Python
谈一谈基于python的面向对象编程基础
May 21 #Python
python字符串和常用数据结构知识总结
May 21 #Python
Opencv实现抠图背景图替换功能
May 21 #Python
You might like
一个php Mysql类 可以参考学习熟悉下
2009/06/21 PHP
新手菜鸟必读:session与cookie的区别
2013/08/22 PHP
PHP传参之传值与传址的区别
2015/04/24 PHP
php实现的简单中文验证码功能示例
2017/01/03 PHP
WAF的正确bypass
2017/01/05 PHP
浅谈PHP面向对象之访问者模式+组合模式
2017/05/22 PHP
PHP实现用session来实现记录用户登陆信息
2018/10/15 PHP
Javascript this指针
2009/07/30 Javascript
Javascript 自定义类型方法小结
2010/03/02 Javascript
JavaScript中跨域调用Flash的方法
2014/08/11 Javascript
jQuery操作JSON的CRUD用法实例
2015/02/25 Javascript
js获取图片宽高的方法
2015/11/25 Javascript
javascript实现页面滚屏效果
2017/01/17 Javascript
js实现增加数字显示的环形进度条效果
2017/02/05 Javascript
Vue filters过滤器的使用方法
2017/07/14 Javascript
JS沙箱模式实例分析
2017/09/04 Javascript
Vue修改mint-ui默认样式的方法
2018/02/03 Javascript
vue下拉菜单组件(含搜索)的实现代码
2018/11/25 Javascript
jQuery使用bind动态绑定事件无效的处理方法
2018/12/11 jQuery
用node开发并发布一个cli工具的方法步骤
2019/01/03 Javascript
Vue实现验证码功能
2019/12/03 Javascript
如何区分vue中的v-show 与 v-if
2020/09/08 Javascript
Python 实现数据结构-堆栈和队列的操作方法
2019/07/17 Python
Python 日期与时间转换的方法
2020/08/01 Python
Python爬取12306车次信息代码详解
2020/08/12 Python
Python制作数据预测集成工具(值得收藏)
2020/08/21 Python
TensorFlow低版本代码自动升级为1.0版本
2021/02/20 Python
HTML5的标签的代码的简单介绍 HTML5标签的简介
2012/05/28 HTML / CSS
HTML5标签嵌套规则详解【必看】
2016/04/26 HTML / CSS
英国高街品牌:Miss Selfridge(塞尔弗里奇小姐)
2016/09/21 全球购物
学校运动会开幕演讲稿
2014/01/04 职场文书
实习指导老师评语
2014/04/26 职场文书
应聘会计求职信
2014/06/11 职场文书
超市优秀员工获奖感言
2014/08/15 职场文书
二审答辩状范文
2015/05/22 职场文书
Java对文件的读写操作方法
2022/04/29 Java/Android