Tensorflow加载预训练模型和保存模型的实例


Posted in Python onJuly 27, 2018

使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获!

1 Tensorflow模型文件

我们在checkpoint_dir目录下保存的文件结构如下:

|--checkpoint_dir
| |--checkpoint
| |--MyModel.meta
| |--MyModel.data-00000-of-00001
| |--MyModel.index

1.1 meta文件

MyModel.meta文件保存的是图结构,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。

1.2 ckpt文件

ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在.ckpt文件中。0.11后,通过两个文件保存,如:

MyModel.data-00000-of-00001
MyModel.index

1.3 checkpoint文件

我们还可以看,checkpoint_dir目录下还有checkpoint文件,该文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model

2 保存Tensorflow模型

tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow中,变量是存在于Session环境中,也就是说,只有在Session环境下才会存有变量值,因此,保存模型时需要传入session:

saver = tf.train.Saver()
saver.save(sess,"./checkpoint_dir/MyModel")

看一个简单例子:

import tensorflow as tf

w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel')

执行后,在checkpoint_dir目录下创建模型文件如下:

checkpoint
MyModel.data-00000-of-00001
MyModel.index
MyModel.meta

另外,如果想要在1000次迭代后,再保存模型,只需设置global_step参数即可:

saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

保存的模型文件名称会在后面加-1000,如下:

checkpoint
MyModel-1000.data-00000-of-00001
MyModel-1000.index
MyModel-1000.meta

在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图:

saver.save(sess, './checkpoint_dir/MyModel',global_step=step,write_meta_graph=False)

另一种比较实用的是,如果你希望每2小时保存一次模型,并且只保存最近的5个模型文件:

tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2)

注意:tensorflow默认只会保存最近的5个模型文件,如果你希望保存更多,可以通过max_to_keep来指定

如果我们不对tf.train.Saver指定任何参数,默认会保存所有变量。如果你不想保存所有变量,而只保存一部分变量,可以通过指定variables/collections。在创建tf.train.Saver实例时,通过将需要保存的变量构造list或者dictionary,传入到Saver中:

import tensorflow as tf
w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver([w1,w2])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

3 导入训练好的模型

在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。因此,在导入模型时,也要分为2步:构造网络图和加载参数

3.1 构造网络图

一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。

saver=tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')

上面一行代码,就把图加载进来了

3.2 加载参数

仅仅有图并没有用,更重要的是,我们需要前面训练好的模型参数(即weights、biases等),本文第2节提到过,变量值需要依赖于Session,因此在加载参数时,先要构造好Session:

import tensorflow as tf
with tf.Session() as sess:
 new_saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
 new_saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))

此时,W1和W2加载进了图,并且可以被访问:

import tensorflow as tf
with tf.Session() as sess: 
 saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
 saver.restore(sess,tf.train.latest_checkpoint('./checkpoint_dir'))
 print(sess.run('w1:0'))
##Model has been restored. Above statement will print the saved value

执行后,打印如下:

[ 0.51480412 -0.56989086]

4 使用恢复的模型

前面我们理解了如何保存和恢复模型,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。这时候,我们可能需要获取训练好的模型中的一些中间结果值,可以通过graph.get_tensor_by_name('w1:0')来获取,注意w1:0是tensor的name。

假设我们有一个简单的网络模型,代码如下:

import tensorflow as tf


w1 = tf.placeholder("float", name="w1")
w2 = tf.placeholder("float", name="w2")
b1= tf.Variable(2.0,name="bias") 

#定义一个op,用于后面恢复
w3 = tf.add(w1,w2)
w4 = tf.multiply(w3,b1,name="op_to_restore")
sess = tf.Session()
sess.run(tf.global_variables_initializer())

#创建一个Saver对象,用于保存所有变量
saver = tf.train.Saver()

#通过传入数据,执行op
print(sess.run(w4,feed_dict ={w1:4,w2:8}))
#打印 24.0 ==>(w1+w2)*b1

#现在保存模型
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

接下来我们使用graph.get_tensor_by_name()方法来操纵这个保存的模型。

import tensorflow as tf

sess=tf.Session()
#先加载图和参数变量
saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))


# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={w1:13.0,w2:17.0}

#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

print(sess.run(op_to_restore,feed_dict))
#打印结果为60.0==>(13+17)*2

注意:保存模型时,只会保存变量的值,placeholder里面的值不会被保存

如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作:

import tensorflow as tf

sess = tf.Session()
# 先加载图和变量
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))

# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict = {w1: 13.0, w2: 17.0}

#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

# 在当前图中能够加入op
add_on_op = tf.multiply(op_to_restore, 2)

print (sess.run(add_on_op, feed_dict))
# 打印120.0==>(13+17)*2*2

如果只想恢复图的一部分,并且再加入其它的op用于fine-tuning。只需通过graph.get_tensor_by_name()方法获取需要的op,并且在此基础上建立图,看一个简单例子,假设我们需要在训练好的VGG网络使用图,并且修改最后一层,将输出改为2,用于fine-tuning新数据:

......
......
saver = tf.train.import_meta_graph('vgg.meta')
# 访问图
graph = tf.get_default_graph() 

#访问用于fine-tuning的output
fc7= graph.get_tensor_by_name('fc7:0')

#如果你想修改最后一层梯度,需要如下
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list()

new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)

# Now, you run this with fine-tuning data in sess.run()

以上这篇Tensorflow加载预训练模型和保存模型的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中的迭代器与生成器高级用法解析
Jun 28 Python
Python使用正则表达式获取网页中所需要的信息
Jan 29 Python
使用Python实现跳帧截取视频帧
May 31 Python
python笔记之mean()函数实现求取均值的功能代码
Jul 05 Python
Apache部署Django项目图文详解
Jul 30 Python
Python 异步协程函数原理及实例详解
Nov 13 Python
如何在mac环境中用python处理protobuf
Dec 25 Python
Python列表操作方法详解
Feb 09 Python
Python3 Click模块的使用方法详解
Feb 12 Python
在django admin中配置搜索域是一个外键时的处理方法
May 20 Python
python 判断一组数据是否符合正态分布
Sep 23 Python
搭建pypi私有仓库实现过程详解
Nov 25 Python
Python解决走迷宫问题算法示例
Jul 27 #Python
python保存文件方法小结
Jul 27 #Python
Python实现输入二叉树的先序和中序遍历,再输出后序遍历操作示例
Jul 27 #Python
tensorflow 加载部分变量的实例讲解
Jul 27 #Python
Python基于递归算法求最小公倍数和最大公约数示例
Jul 27 #Python
Python切片操作深入详解
Jul 27 #Python
对Tensorflow中的变量初始化函数详解
Jul 27 #Python
You might like
丧钟首部独立剧集《丧钟:骑士与龙》北美正式开播,场面血腥
2020/04/09 欧美动漫
php中json_encode处理gbk与gb2312中文乱码问题的解决方法
2014/07/10 PHP
php使用PDO操作MySQL数据库实例
2014/12/30 PHP
PHP配置把错误日志以邮件方式发送方法(Windows系统)
2015/06/23 PHP
Laravel如何友好的修改.env配置文件详解
2017/06/07 PHP
Thinkphp5.0 框架视图view的比较标签用法分析
2019/10/12 PHP
js cookies 常见网页木马挂马代码 24小时只加载一次
2009/04/13 Javascript
让你的CSS像Jquery一样做筛选的实现方法
2011/07/10 Javascript
javascript权威指南 学习笔记之null和undefined
2011/09/25 Javascript
jQuery 选择表格(table)里的行和列及改变简单样式
2012/12/15 Javascript
innerHTML,outerHTML,innerText,outerText的用法及区别解析
2013/12/16 Javascript
javascript实现的简单的表单验证
2015/07/10 Javascript
谈谈我对JavaScript原型和闭包系列理解(随手笔记9)
2015/12/24 Javascript
Angular和Vue双向数据绑定的实现原理(重点是vue的双向绑定)
2016/11/22 Javascript
详解VueJS应用中管理用户权限
2018/02/02 Javascript
原生JS实现的碰撞检测功能示例
2018/05/18 Javascript
layui table去掉右侧滑动条的实现方法
2019/09/05 Javascript
JavaScript对象原型链原理详解
2020/02/05 Javascript
python实现读取命令行参数的方法
2015/05/22 Python
Python基于回溯法子集树模板解决野人与传教士问题示例
2017/09/11 Python
解决python使用open打开文件中文乱码的问题
2017/12/29 Python
Python使用jsonpath-rw模块处理Json对象操作示例
2018/07/31 Python
Python中Proxypool库的安装与配置
2018/10/19 Python
用Python实现将一张图片分成9宫格的示例
2019/07/05 Python
Python判断字符串是否xx开始或结尾的示例
2019/08/08 Python
Python基于Twilio及腾讯云实现国际国内短信接口
2020/06/18 Python
python语音识别指南终极版(有这一篇足矣)
2020/09/09 Python
属性与 @property 方法让你的python更高效
2020/09/21 Python
Python 用__new__方法实现单例的操作
2020/12/11 Python
TOWER London官网:鞋子、靴子、运动鞋等
2019/07/14 全球购物
某/etc/fstab文件中的某行如下: /dev/had5 /mnt/dosdata msdos defaults,usrquota 1 2 请解释其含义
2013/09/18 面试题
大专计算机个人求职的自我评价
2013/10/21 职场文书
外贸英语专业求职信范文
2013/12/25 职场文书
先进教育工作者事迹材料
2014/12/23 职场文书
立秋之描写立秋的作文(五年级)
2019/08/08 职场文书
MySQL连接控制插件介绍
2021/09/25 MySQL