Tensorflow加载预训练模型和保存模型的实例


Posted in Python onJuly 27, 2018

使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获!

1 Tensorflow模型文件

我们在checkpoint_dir目录下保存的文件结构如下:

|--checkpoint_dir
| |--checkpoint
| |--MyModel.meta
| |--MyModel.data-00000-of-00001
| |--MyModel.index

1.1 meta文件

MyModel.meta文件保存的是图结构,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。

1.2 ckpt文件

ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在.ckpt文件中。0.11后,通过两个文件保存,如:

MyModel.data-00000-of-00001
MyModel.index

1.3 checkpoint文件

我们还可以看,checkpoint_dir目录下还有checkpoint文件,该文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model

2 保存Tensorflow模型

tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow中,变量是存在于Session环境中,也就是说,只有在Session环境下才会存有变量值,因此,保存模型时需要传入session:

saver = tf.train.Saver()
saver.save(sess,"./checkpoint_dir/MyModel")

看一个简单例子:

import tensorflow as tf

w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel')

执行后,在checkpoint_dir目录下创建模型文件如下:

checkpoint
MyModel.data-00000-of-00001
MyModel.index
MyModel.meta

另外,如果想要在1000次迭代后,再保存模型,只需设置global_step参数即可:

saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

保存的模型文件名称会在后面加-1000,如下:

checkpoint
MyModel-1000.data-00000-of-00001
MyModel-1000.index
MyModel-1000.meta

在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图:

saver.save(sess, './checkpoint_dir/MyModel',global_step=step,write_meta_graph=False)

另一种比较实用的是,如果你希望每2小时保存一次模型,并且只保存最近的5个模型文件:

tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2)

注意:tensorflow默认只会保存最近的5个模型文件,如果你希望保存更多,可以通过max_to_keep来指定

如果我们不对tf.train.Saver指定任何参数,默认会保存所有变量。如果你不想保存所有变量,而只保存一部分变量,可以通过指定variables/collections。在创建tf.train.Saver实例时,通过将需要保存的变量构造list或者dictionary,传入到Saver中:

import tensorflow as tf
w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver([w1,w2])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

3 导入训练好的模型

在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。因此,在导入模型时,也要分为2步:构造网络图和加载参数

3.1 构造网络图

一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。

saver=tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')

上面一行代码,就把图加载进来了

3.2 加载参数

仅仅有图并没有用,更重要的是,我们需要前面训练好的模型参数(即weights、biases等),本文第2节提到过,变量值需要依赖于Session,因此在加载参数时,先要构造好Session:

import tensorflow as tf
with tf.Session() as sess:
 new_saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
 new_saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))

此时,W1和W2加载进了图,并且可以被访问:

import tensorflow as tf
with tf.Session() as sess: 
 saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
 saver.restore(sess,tf.train.latest_checkpoint('./checkpoint_dir'))
 print(sess.run('w1:0'))
##Model has been restored. Above statement will print the saved value

执行后,打印如下:

[ 0.51480412 -0.56989086]

4 使用恢复的模型

前面我们理解了如何保存和恢复模型,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。这时候,我们可能需要获取训练好的模型中的一些中间结果值,可以通过graph.get_tensor_by_name('w1:0')来获取,注意w1:0是tensor的name。

假设我们有一个简单的网络模型,代码如下:

import tensorflow as tf


w1 = tf.placeholder("float", name="w1")
w2 = tf.placeholder("float", name="w2")
b1= tf.Variable(2.0,name="bias") 

#定义一个op,用于后面恢复
w3 = tf.add(w1,w2)
w4 = tf.multiply(w3,b1,name="op_to_restore")
sess = tf.Session()
sess.run(tf.global_variables_initializer())

#创建一个Saver对象,用于保存所有变量
saver = tf.train.Saver()

#通过传入数据,执行op
print(sess.run(w4,feed_dict ={w1:4,w2:8}))
#打印 24.0 ==>(w1+w2)*b1

#现在保存模型
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

接下来我们使用graph.get_tensor_by_name()方法来操纵这个保存的模型。

import tensorflow as tf

sess=tf.Session()
#先加载图和参数变量
saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))


# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={w1:13.0,w2:17.0}

#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

print(sess.run(op_to_restore,feed_dict))
#打印结果为60.0==>(13+17)*2

注意:保存模型时,只会保存变量的值,placeholder里面的值不会被保存

如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作:

import tensorflow as tf

sess = tf.Session()
# 先加载图和变量
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))

# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict = {w1: 13.0, w2: 17.0}

#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

# 在当前图中能够加入op
add_on_op = tf.multiply(op_to_restore, 2)

print (sess.run(add_on_op, feed_dict))
# 打印120.0==>(13+17)*2*2

如果只想恢复图的一部分,并且再加入其它的op用于fine-tuning。只需通过graph.get_tensor_by_name()方法获取需要的op,并且在此基础上建立图,看一个简单例子,假设我们需要在训练好的VGG网络使用图,并且修改最后一层,将输出改为2,用于fine-tuning新数据:

......
......
saver = tf.train.import_meta_graph('vgg.meta')
# 访问图
graph = tf.get_default_graph() 

#访问用于fine-tuning的output
fc7= graph.get_tensor_by_name('fc7:0')

#如果你想修改最后一层梯度,需要如下
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list()

new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)

# Now, you run this with fine-tuning data in sess.run()

以上这篇Tensorflow加载预训练模型和保存模型的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python字符串加密解密的三种方法分享(base64 win32com)
Jan 19 Python
在Windows8上的搭建Python和Django环境
Jul 03 Python
在Python中使用swapCase()方法转换大小写的教程
May 20 Python
Python面向对象类继承和组合实例分析
May 28 Python
Python函数装饰器常见使用方法实例详解
Mar 30 Python
PyCharm 配置远程python解释器和在本地修改服务器代码
Jul 23 Python
Pycharm 2020年最新激活码(亲测有效)
Sep 18 Python
Python unittest 自动识别并执行测试用例方式
Mar 09 Python
Python 列表中的修改、添加和删除元素的实现
Jun 11 Python
在Keras中CNN联合LSTM进行分类实例
Jun 29 Python
python 深度学习中的4种激活函数
Sep 18 Python
Python 无限级分类树状结构生成算法的实现
Jan 21 Python
Python解决走迷宫问题算法示例
Jul 27 #Python
python保存文件方法小结
Jul 27 #Python
Python实现输入二叉树的先序和中序遍历,再输出后序遍历操作示例
Jul 27 #Python
tensorflow 加载部分变量的实例讲解
Jul 27 #Python
Python基于递归算法求最小公倍数和最大公约数示例
Jul 27 #Python
Python切片操作深入详解
Jul 27 #Python
对Tensorflow中的变量初始化函数详解
Jul 27 #Python
You might like
PHP模板引擎SMARTY
2006/10/09 PHP
PHP完整的日历类(CLASS)
2006/11/27 PHP
PHP中的float类型使用说明
2010/07/27 PHP
利用Ffmpeg获得flv视频缩略图和视频时间的代码
2011/09/15 PHP
php从右向左/从左向右截取字符串的实现方法
2011/11/28 PHP
php中ob_get_length缓冲与获取缓冲长度实例
2014/11/20 PHP
PHP实现正则表达式分组捕获操作示例
2018/02/03 PHP
laravel-admin select框默认选中的方法
2019/10/03 PHP
在网页中屏蔽快捷键
2006/09/06 Javascript
JavaScript定义类或函数的几种方式小结
2011/01/09 Javascript
jquery实现不同大小浏览器使用不同的css样式表的方法
2014/04/02 Javascript
jQuery CSS()方法改变现有的CSS样式表
2014/09/09 Javascript
采用自执行的匿名函数解决for循环使用闭包的问题
2014/09/11 Javascript
JavaScript使用setInterval()函数实现简单轮询操作的方法
2015/02/02 Javascript
coffeescript使用的方式汇总
2015/08/05 Javascript
BootStrap制作导航条实例代码
2016/05/06 Javascript
AngularJS基础 ng-mouseenter 指令示例代码
2016/08/02 Javascript
用jQuery.ajaxSetup实现对请求和响应数据的过滤
2016/12/20 Javascript
web打印小结
2017/01/11 Javascript
完美实现js选项卡切换效果(二)
2017/03/08 Javascript
微信小程序左滑删除功能开发案例详解
2018/11/12 Javascript
Vue为什么要谨慎使用$attrs与$listeners
2020/08/27 Javascript
Js实现粘贴上传图片的原理及示例
2020/12/09 Javascript
[02:35]DOTA2英雄基础教程 末日使者
2013/12/04 DOTA
python通过shutil实现快速文件复制的方法
2015/03/14 Python
详解Python中for循环的使用方法
2015/05/14 Python
详谈Python中列表list,元祖tuple和numpy中的array区别
2018/04/18 Python
python 实现在Excel末尾增加新行
2018/05/02 Python
python 对类的成员函数开启线程的方法
2019/01/22 Python
利用Pytorch实现简单的线性回归算法
2020/01/15 Python
CSS3中设置3D变形的transform-style属性详解
2016/05/23 HTML / CSS
Allsole美国/加拿大:英国一家专门出售品牌鞋子的网站
2018/10/21 全球购物
如何整合JQuery和Prototype
2014/01/31 面试题
公司领导班子对照材料
2014/08/18 职场文书
统计员岗位职责
2015/02/11 职场文书
详解JavaScript中Arguments对象用途
2021/08/30 Javascript