Tensorflow加载预训练模型和保存模型的实例


Posted in Python onJuly 27, 2018

使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获!

1 Tensorflow模型文件

我们在checkpoint_dir目录下保存的文件结构如下:

|--checkpoint_dir
| |--checkpoint
| |--MyModel.meta
| |--MyModel.data-00000-of-00001
| |--MyModel.index

1.1 meta文件

MyModel.meta文件保存的是图结构,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。

1.2 ckpt文件

ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在.ckpt文件中。0.11后,通过两个文件保存,如:

MyModel.data-00000-of-00001
MyModel.index

1.3 checkpoint文件

我们还可以看,checkpoint_dir目录下还有checkpoint文件,该文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model

2 保存Tensorflow模型

tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow中,变量是存在于Session环境中,也就是说,只有在Session环境下才会存有变量值,因此,保存模型时需要传入session:

saver = tf.train.Saver()
saver.save(sess,"./checkpoint_dir/MyModel")

看一个简单例子:

import tensorflow as tf

w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel')

执行后,在checkpoint_dir目录下创建模型文件如下:

checkpoint
MyModel.data-00000-of-00001
MyModel.index
MyModel.meta

另外,如果想要在1000次迭代后,再保存模型,只需设置global_step参数即可:

saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

保存的模型文件名称会在后面加-1000,如下:

checkpoint
MyModel-1000.data-00000-of-00001
MyModel-1000.index
MyModel-1000.meta

在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图:

saver.save(sess, './checkpoint_dir/MyModel',global_step=step,write_meta_graph=False)

另一种比较实用的是,如果你希望每2小时保存一次模型,并且只保存最近的5个模型文件:

tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2)

注意:tensorflow默认只会保存最近的5个模型文件,如果你希望保存更多,可以通过max_to_keep来指定

如果我们不对tf.train.Saver指定任何参数,默认会保存所有变量。如果你不想保存所有变量,而只保存一部分变量,可以通过指定variables/collections。在创建tf.train.Saver实例时,通过将需要保存的变量构造list或者dictionary,传入到Saver中:

import tensorflow as tf
w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver([w1,w2])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

3 导入训练好的模型

在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。因此,在导入模型时,也要分为2步:构造网络图和加载参数

3.1 构造网络图

一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。

saver=tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')

上面一行代码,就把图加载进来了

3.2 加载参数

仅仅有图并没有用,更重要的是,我们需要前面训练好的模型参数(即weights、biases等),本文第2节提到过,变量值需要依赖于Session,因此在加载参数时,先要构造好Session:

import tensorflow as tf
with tf.Session() as sess:
 new_saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
 new_saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))

此时,W1和W2加载进了图,并且可以被访问:

import tensorflow as tf
with tf.Session() as sess: 
 saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
 saver.restore(sess,tf.train.latest_checkpoint('./checkpoint_dir'))
 print(sess.run('w1:0'))
##Model has been restored. Above statement will print the saved value

执行后,打印如下:

[ 0.51480412 -0.56989086]

4 使用恢复的模型

前面我们理解了如何保存和恢复模型,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。这时候,我们可能需要获取训练好的模型中的一些中间结果值,可以通过graph.get_tensor_by_name('w1:0')来获取,注意w1:0是tensor的name。

假设我们有一个简单的网络模型,代码如下:

import tensorflow as tf


w1 = tf.placeholder("float", name="w1")
w2 = tf.placeholder("float", name="w2")
b1= tf.Variable(2.0,name="bias") 

#定义一个op,用于后面恢复
w3 = tf.add(w1,w2)
w4 = tf.multiply(w3,b1,name="op_to_restore")
sess = tf.Session()
sess.run(tf.global_variables_initializer())

#创建一个Saver对象,用于保存所有变量
saver = tf.train.Saver()

#通过传入数据,执行op
print(sess.run(w4,feed_dict ={w1:4,w2:8}))
#打印 24.0 ==>(w1+w2)*b1

#现在保存模型
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

接下来我们使用graph.get_tensor_by_name()方法来操纵这个保存的模型。

import tensorflow as tf

sess=tf.Session()
#先加载图和参数变量
saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))


# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={w1:13.0,w2:17.0}

#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

print(sess.run(op_to_restore,feed_dict))
#打印结果为60.0==>(13+17)*2

注意:保存模型时,只会保存变量的值,placeholder里面的值不会被保存

如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作:

import tensorflow as tf

sess = tf.Session()
# 先加载图和变量
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))

# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict = {w1: 13.0, w2: 17.0}

#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

# 在当前图中能够加入op
add_on_op = tf.multiply(op_to_restore, 2)

print (sess.run(add_on_op, feed_dict))
# 打印120.0==>(13+17)*2*2

如果只想恢复图的一部分,并且再加入其它的op用于fine-tuning。只需通过graph.get_tensor_by_name()方法获取需要的op,并且在此基础上建立图,看一个简单例子,假设我们需要在训练好的VGG网络使用图,并且修改最后一层,将输出改为2,用于fine-tuning新数据:

......
......
saver = tf.train.import_meta_graph('vgg.meta')
# 访问图
graph = tf.get_default_graph() 

#访问用于fine-tuning的output
fc7= graph.get_tensor_by_name('fc7:0')

#如果你想修改最后一层梯度,需要如下
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list()

new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)

# Now, you run this with fine-tuning data in sess.run()

以上这篇Tensorflow加载预训练模型和保存模型的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python isinstance判断对象类型
Sep 06 Python
从零学python系列之数据处理编程实例(一)
May 22 Python
python判断图片宽度和高度后删除图片的方法
May 22 Python
Python中条件判断语句的简单使用方法
Aug 21 Python
详解Python中 __get__和__getattr__和__getattribute__的区别
Jun 16 Python
python RabbitMQ 使用详细介绍(小结)
Nov 08 Python
pandas分区间,算频率的实例
Jul 04 Python
python程序运行进程、使用时间、剩余时间显示功能的实现代码
Jul 11 Python
react+django清除浏览器缓存的几种方法小结
Jul 17 Python
Python 求数组局部最大值的实例
Nov 26 Python
python实现图片横向和纵向拼接
Mar 05 Python
PyQt5通过信号实现MVC的示例
Feb 06 Python
Python解决走迷宫问题算法示例
Jul 27 #Python
python保存文件方法小结
Jul 27 #Python
Python实现输入二叉树的先序和中序遍历,再输出后序遍历操作示例
Jul 27 #Python
tensorflow 加载部分变量的实例讲解
Jul 27 #Python
Python基于递归算法求最小公倍数和最大公约数示例
Jul 27 #Python
Python切片操作深入详解
Jul 27 #Python
对Tensorflow中的变量初始化函数详解
Jul 27 #Python
You might like
用IE远程创建Mysql数据库的简易程序
2006/10/09 PHP
那些年一起学习的PHP(二)
2012/03/21 PHP
基于ThinkPHP+uploadify+upload+PHPExcel 无刷新导入数据
2015/09/23 PHP
Twig模板引擎用法入门教程
2016/01/20 PHP
php中通过eval实现字符串格式的计算公式
2017/03/18 PHP
利用PHP访问MySql数据库的逻辑操作以及增删改查的实例讲解
2017/08/30 PHP
Extjs中ComboBoxTree实现的下拉框树效果(自写)
2013/05/28 Javascript
jQuery 获取/设置/删除DOM元素的属性以a元素为例
2014/05/23 Javascript
Js为表单动态添加节点内容的方法
2015/02/10 Javascript
javascript上下方向键控制表格行选中并高亮显示的方法
2015/02/13 Javascript
javascript实现日期按月份加减
2015/05/15 Javascript
详解JS中遍历语法的比较
2017/04/07 Javascript
简单实现js放大镜效果
2017/07/24 Javascript
微信小程序引入Vant组件库过程解析
2019/08/06 Javascript
详解Vue的mixin策略
2020/11/19 Vue.js
python中join()方法介绍
2018/10/11 Python
Tensorflow分类器项目自定义数据读入的实现
2019/02/05 Python
Python List列表对象内置方法实例详解
2019/10/22 Python
解决python运行效率不高的问题
2020/07/20 Python
详解CSS3的perspective属性设置3D变换距离的方法
2016/05/23 HTML / CSS
CSS3 画基本图形,圆形、椭圆形、三角形等
2016/09/20 HTML / CSS
Shell如何接收变量输入
2012/09/24 面试题
优秀党员转正的自我评价
2013/10/06 职场文书
毕业生造价工程师求职信
2013/10/17 职场文书
平面设计师的工作职责
2013/11/21 职场文书
应届毕业生求职信范例分享
2013/12/17 职场文书
企事业单位求职者的自我评价
2013/12/28 职场文书
运动会广播稿80字
2014/01/23 职场文书
采购部经理岗位职责
2014/02/10 职场文书
英语分层教学实施方案
2014/06/15 职场文书
2014年远程教育工作总结
2014/12/09 职场文书
特岗教师个人总结
2015/02/10 职场文书
办公室岗位职责范本
2015/04/11 职场文书
2015年机关后勤工作总结
2015/05/26 职场文书
运动会开幕式通讯稿
2015/07/18 职场文书
适合后台管理系统开发的12个前端框架(小结)
2021/06/29 Javascript