如何利用React实现图片识别App


Posted in Javascript onFebruary 18, 2022

先把效果图给大家放上来

如何利用React实现图片识别App

如何利用React实现图片识别App

如何利用React实现图片识别App

个人觉得效果还行。识别不太准确是因为这个 app学习图片的时间太短(电脑太卡)。

(笔者是 window10) 安装运行环境:

  • npm install --global windows-build-tools(这个时间很漫长。。。)
  • npm install @tensorflow/tfjs-node(这个时间很漫长。。。)

项目目录如下 如何利用React实现图片识别App

train文件夹 index.js(入口文件)

const tf = require('@tensorflow/tfjs-node')
const getData = require('./data')

const TRAIN_DIR = '../垃圾分类/train'
const OUTPUT_DIR = '../outputDir'
const MOBILENET_URL = 'http://ai-sample.oss-cn-hangzhou.aliyuncs.com/pipcook/models/mobilenet/web_model/model.json'

const main = async () => {
  // 加载数据
  const { ds, classes} = await getData(TRAIN_DIR, OUTPUT_DIR)
  // 定义模型
  const mobilenet = await tf.loadLayersModel(MOBILENET_URL)
  mobilenet.summary()
  // console.log(mobilenet.layers.map((l, i) => [l.name, i]))
  const model = tf.sequential()
  for (let i = 0; i <= 86; i += 1) {
    const layer = mobilenet.layers[i]
    layer.trainable = false
    model.add(layer)
  }
  model.add(tf.layers.flatten())
  model.add(tf.layers.dense({
    units: 10,
    activation: 'relu'
  }))
  model.add(tf.layers.dense({
    units: classes.length,
    activation: 'softmax'
  }))
  // 训练模型
  model.compile({
    loss: 'sparseCategoricalCrossentropy',
    optimizer: tf.train.adam(),
    metrics: ['acc']
  })
  await model.fitDataset(ds, { epochs: 20 })
  await model.save(`file://${process.cwd()}/${OUTPUT_DIR}`)
}
main()

data.js(处理数据)

const fs = require('fs')
const tf = require('@tensorflow/tfjs-node')

const img2x = (imgPath) => {
  const buffer = fs.readFileSync(imgPath)
  return tf.tidy(() => {
    const imgTs = tf.node.decodeImage(new Uint8Array(buffer))
    const imgTsResized = tf.image.resizeBilinear(imgTs, [224, 224])
    return imgTsResized.toFloat().sub(255/2).div(255/2).reshape([1, 224, 224, 3])
  })
}

const getData = async (trainDir, outputDir) => {
  const classes = fs.readdirSync(trainDir)
  fs.writeFileSync(`${outputDir}/classes.json`, JSON.stringify(classes))

  const data = []
  classes.forEach((dir, dirIndex) => {
    fs.readdirSync(`${trainDir}/${dir}`)
      .filter(n => n.match(/jpg$/))
      .slice(0, 10)
      .forEach(filename => {
        console.log('读取', dir, filename)
        const imgPath = `${trainDir}/${dir}/${filename}`
        data.push({ imgPath, dirIndex })
      })
  })

  tf.util.shuffle(data)

  const ds = tf.data.generator(function* () {
    const count = data.length
    const batchSize = 32
    for (let start = 0; start < count; start += batchSize) {
      const end = Math.min(start + batchSize, count)
      yield tf.tidy(() => {
        const inputs = []
        const labels = []
        for (let j = start; j < end; j += 1) {
          const { imgPath, dirIndex } = data[j]
          const x = img2x(imgPath)
          inputs.push(x)
          labels.push(dirIndex)
        }
        const xs = tf.concat(inputs)
        const ys = tf.tensor(labels)
        return { xs, ys }
      })
    }
  })

  return {
    ds,
    classes
  }
}

module.exports = getData

安装一些运行项目需要的插件 如何利用React实现图片识别App

app 文件夹

import React, { PureComponent } from 'react'
import { Button, Progress, Spin, Empty } from 'antd'
import 'antd/dist/antd.css'
import * as tf from '@tensorflow/tfjs'
import { file2img, img2x } from './utils'
import intro from './intro'

const DATA_URL = 'http://127.0.0.1:8080/'
class App extends PureComponent {
  state = {}
  async componentDidMount() {
    this.model = await tf.loadLayersModel(DATA_URL + '/model.json')
    // this.model.summary()
    this.CLASSES = await fetch(DATA_URL + '/classes.json').then(res => res.json())
  }
  predict = async (file) => {
    const img = await file2img(file)

    this.setState({
      imgSrc: img.src,
      isLoading: true
    })
    setTimeout(() => {
      const pred = tf.tidy(() => {
        const x = img2x(img)
        return this.model.predict(x)
      })

      const results = pred.arraySync()[0]
        .map((score, i) => ({score, label: this.CLASSES[i]}))
        .sort((a, b) => b.score - a.score)
      this.setState({
        results,
        isLoading: false
      })
    }, 0)
  }

  renderResult = (item) => {
    const finalScore = Math.round(item.score * 100)
    return (
      <tr key={item.label}>
        <td style={{ width: 80, padding: '5px 0' }}>{item.label}</td>
        <td>
          <Progress percent={finalScore} status={finalScore === 100 ? 'success' : 'normal'} />
        </td>
      </tr>
    )
  }

  render() {
    const { imgSrc, results, isLoading } = this.state
    const finalItem = results && {...results[0], ...intro[results[0].label]}

    return (
      <div style={{padding: 20}}>
        <span
          style={{ color: '#cccccc', textAlign: 'center', fontSize: 12, display: 'block' }}
        >识别可能不准确</span>
        <Button
          type="primary"
          size="large"
          style={{width: '100%'}}
          onClick={() => this.upload.click()}
        >
          选择图片识别
        </Button>
        <input
          type="file"
          onChange={e => this.predict(e.target.files[0])}
          ref={el => {this.upload = el}}
          style={{ display: 'none' }}
        />
        {
          !results && !imgSrc && <Empty style={{ marginTop: 40 }} />
        }
        {imgSrc && <div style={{ marginTop: 20, textAlign: 'center' }}>
          <img src={imgSrc} style={{ maxWidth: '100%' }} />
        </div>}
        {finalItem && <div style={{marginTop: 20}}>识别结果: </div>}
        {finalItem && <div style={{display: 'flex', alignItems: 'flex-start', marginTop: 20}}>
          <img
            src={finalItem.icon}
            width={120}
          />
          <div>
            <h2 style={{color: finalItem.color}}>
              {finalItem.label}
            </h2>
            <div style={{color: finalItem.color}}>
              {finalItem.intro}
            </div>
          </div>
        </div>}
        {
          isLoading && <Spin size="large" style={{display: 'flex', justifyContent: 'center', alignItems: 'center', marginTop: 40 }} />
        }
        {results && <div style={{ marginTop: 20 }}>
          <table style={{width: '100%'}}>
            <tbody>
              <tr>
                <td>类别</td>
                <td>匹配度</td>
              </tr>
              {results.map(this.renderResult)}
            </tbody>
          </table>
        </div>}
      </div>
    )
  }
}

export default App

index.html

<!DOCTYPE html>
<html>
  <head>
    <title>垃圾分类</title>
    <meta name="viewport" content="width=device-width, inital-scale=1">
  </head>
  <body>
    <div id="app"></div>
    <script src="./index.js"></script>
  </body>
</html>

index.js

import React from 'react'
import ReactDOM from 'react-dom'
import App from './App'

ReactDOM.render(<App />, document.querySelector('#app'))

intro.js

export default {
  '可回收物': {
    icon: 'https://lajifenleiapp.com/static/svg/1_3F6BA8.svg',
    color: '#3f6ba8',
    intro: '是指在日常生活中或者为日常生活提供服务的活动中产生的,已经失去原有全部或者部分使用价值,回收后经过再加工可以成为生产原料或者经过整理可以再利用的物品,包括废纸类、塑料类、玻璃类、金属类、织物类等。'
  },
  '有害垃圾': {
    icon: 'https://lajifenleiapp.com/static/svg/2v_B43953.svg',
    color: '#b43953',
    intro: '是指生活垃圾中对人体健康或者自然环境造成直接或者潜在危害的物质,包括废充电电池、废扣式电池、废灯管、弃置药品、废杀虫剂(容器)、废油漆(容器)、废日用化学品、废水银产品、废旧电器以及电子产品等。'
  },
  '厨余垃圾': {
    icon: 'https://lajifenleiapp.com/static/svg/3v_48925B.svg',
    color: '#48925b',
    intro: '是指居民日常生活中产生的有机易腐垃圾,包括菜叶、剩菜、剩饭、果皮、蛋壳、茶渣、骨头等。'
  },
  '其他垃圾': {
    icon: 'https://lajifenleiapp.com/static/svg/4_89918B.svg',
    color: '#89918b',
    intro: '是指除可回收物、有害垃圾和厨余垃圾之外的,混杂、污染、难分类的其他生活垃圾。'
  }
}

utils.js

import * as tf from '@tensorflow/tfjs'

export const file2img = async (f) => {
  return new Promise(reslove => {
    const reader = new FileReader()
    reader.readAsDataURL(f)
    reader.onload = (e) => {
      const img = document.createElement('img')
      img.src = e.target.result
      img.width = 224
      img.height = 224
      img.onload = () => { reslove(img) }
    }
  })
}

export function img2x(imgEl) {
  return tf.tidy(() => {
    return tf.browser.fromPixels(imgEl)
        .toFloat().sub(255/2).div(255/2)
        .reshape([1, 224, 224, 3])
  })
}

运行项目代码之前,我们需要先在 train 目录下运行,node index.js,生成 model.json 以供识别系统使用。之后需要在根目录下运行 hs outputDir --cors, 使得生成的 model.json 运行在 http 环境下,之后才可以运行 npm start ,不然项目是会报错的。

主要的代码就是上面这些。前面笔者也说了。自己对这方面完全不懂,所以也无法解说其中的代码。各位感兴趣就自己研究一下。代码地址奉上。

gitee.com/suiboyu/gar…

总结

到此这篇关于如何利用React实现图片识别App的文章就介绍到这了,更多相关React图片识别App内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Javascript 相关文章推荐
JS面向对象、prototype、call()、apply()
May 14 Javascript
基于jquery的Repeater实现代码
Jul 17 Javascript
JS实现日期加减的方法
Nov 29 Javascript
IE的事件传递-event.cancelBubble示例介绍
Jan 12 Javascript
jQuery制作效果超棒的手风琴折叠菜单
Apr 03 Javascript
js鼠标点击图片切换效果实现代码
Nov 19 Javascript
js类式继承与原型式继承详解
Apr 07 Javascript
9个让JavaScript调试更简单的Console命令
Nov 14 Javascript
JavaScript设计模式之策略模式详解
Jun 09 Javascript
Vue 让元素抖动/摆动起来的实现代码
May 31 Javascript
jQuery 获取除某指定对象外的其他对象 ( :not() 与.not())
Oct 10 jQuery
微信小程序 网络通信实现详解
Jul 23 Javascript
JavaScript展开运算符和剩余运算符的区别详解
Feb 18 #Javascript
微信小程序中使用vant框架的具体步骤
Vue elementUI表单嵌套表格并对每行进行校验详解
Feb 18 #Vue.js
微信小程序中wxs文件的一些妙用分享
Feb 18 #Javascript
vue项目支付功能代码详解
Feb 18 #Vue.js
JavaScript的Set数据结构详解
Feb 18 #Javascript
JS封装cavans多种滤镜组件
You might like
如何从一个php文件向另一个地址post数据,不用表单和隐藏的变量的
2007/03/06 PHP
dhtmlxTree目录树增加右键菜单以及拖拽排序的实现方法
2013/04/26 PHP
PHP写日志的实现方法
2014/11/05 PHP
使用PHP下载CSS文件中的所有图片【几行代码即可实现】
2016/12/14 PHP
yii2的restful api路由实例详解
2019/05/14 PHP
PHP实现的操作数组类库定义与用法示例
2019/05/24 PHP
jQuery的实现原理的模拟代码 -3 事件处理
2010/08/03 Javascript
很棒的学习jQuery的12个网站推荐
2011/04/28 Javascript
caller和callee的区别介绍及演示结果
2013/03/10 Javascript
javascript打印大全(打印页面设置/打印预览代码)
2013/03/29 Javascript
jQuery简单实现网页选项卡特效
2014/11/24 Javascript
详解JavaScript的AngularJS框架中的表达式与指令
2016/03/05 Javascript
jsTree事件和交互以及插件plugins详解
2017/08/29 Javascript
微信小程序实现图片压缩功能
2018/01/26 Javascript
页面内锚点定位及跳转方法总结(推荐)
2019/04/24 Javascript
详解vue为什么要求组件模板只能有一个根元素
2019/07/22 Javascript
微信小程序实现上传多个文件 超过10个
2020/03/30 Javascript
mpvue网易云短信接口实现小程序短信登录的示例代码
2020/04/03 Javascript
为什么推荐使用JSX开发Vue3
2020/12/28 Vue.js
python多进程控制学习小结
2018/10/31 Python
在Python中过滤Windows文件名中的非法字符方法
2019/06/10 Python
详解用pyecharts Geo实现动态数据热力图城市找不到问题解决
2019/06/26 Python
Python bytes string相互转换过程解析
2020/03/05 Python
Python tkinter实现简单加法计算器代码实例
2020/05/13 Python
利用Python实现自动扫雷小脚本
2020/12/17 Python
HTML5拖拉上传文件的简单实例
2017/01/11 HTML / CSS
Bergfreunde丹麦:登山装备网上零售商
2017/02/26 全球购物
《分一分》教学反思
2014/04/13 职场文书
我的大学生活演讲稿
2014/04/25 职场文书
婚前保证书
2014/04/29 职场文书
2014企业领导班子四风对照检查材料思想汇报
2014/09/17 职场文书
2015年劳动部工作总结
2015/05/23 职场文书
侵犯商业秘密的律师函
2015/05/27 职场文书
Redis 哨兵机制及配置实现
2022/03/25 Redis
Python写情书? 10行代码展示如何把情书写在她的照片里
2022/04/21 Python
排查Tomcat进程假死的问题
2022/05/06 Servers