python 实现德洛内三角剖分的操作


Posted in Python onApril 22, 2021

我也不知道这玩意主要是干啥用的

实现如下

我用剖分的三角形的三个顶点到中心点的距离和作为颜色, 结果显示: 点越密集的地方, 图片上的颜色越深。

from scipy.spatial import Delaunay
import numpy as np
import matplotlib.pyplot as plt
width = 80
height = 40 
pointNumber = 50
points = np.zeros((pointNumber, 2)) 
points[:, 0] = np.random.randint(0, width, pointNumber) 
points[:, 1] = np.random.randint(0, height, pointNumber)
tri = Delaunay(points)
center = np.sum(points[tri.simplices], axis=1)/3.0 
'''
color = []
for sim in points[tri.simplices]:
    x1, y1 = sim[0][0], sim[0][1]
    x2, y2 = sim[1][0], sim[1][1]
    x3, y3 = sim[2][0], sim[2][1]
    
    s = ((x1-x2)**2+(y1-y2)**2)**0.5 + ((x1-x3)**2+(y1-y3)**2)**0.5 + ((x3-x2)**2+(y3-y2)**2)**0.5
    color.append(s)
color = np.array(color)
'''
color = []
for index, sim in enumerate(points[tri.simplices]):
    cx, cy = center[index][0], center[index][1]
    x1, y1 = sim[0][0], sim[0][1]
    x2, y2 = sim[1][0], sim[1][1]
    x3, y3 = sim[2][0], sim[2][1]
    
    s = ((x1-cx)**2+(y1-cy)**2)**0.5 + ((cx-x3)**2+(cy-y3)**2)**0.5 + ((cx-x2)**2+(cy-y2)**2)**0.5
    color.append(s)
color = np.array(color)
plt.figure(figsize=(20, 10)) 
plt.tripcolor(points[:, 0], points[:, 1], tri.simplices.copy(), facecolors=color, edgecolors='k') 
plt.tick_params(labelbottom='off', labelleft='off', left='off', right='off', bottom='off', top='off') 
ax = plt.gca() 
plt.scatter(points[:,0],points[:,1], color='r')
#plt.grid()
plt.savefig('Delaunay.png', transparent=True, dpi=600)

python 实现德洛内三角剖分的操作

补充:生长算法实现点集的三角剖分( Python(Tkinter模块))

关于三角剖分

假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件:

1.除了端点,平面图中的边不包含点集中的任何点。

2.没有相交边。

3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。

在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。

【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:

存在一个圆经过a,b两点,圆内(注意是圆内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。

【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。

python 实现德洛内三角剖分的操作

关于Delaunay三角剖分算法可以参考百度百科Delaunay三角剖分算法

我做三角剖分的目的——构建TIN,不规则三角网

不规则三角网(TIN)是DEM的重要形式之一,相较于规则格网,其具有数据冗余小、细节丢失少的特点。

在分布不规则的高程点之间构建出三角网,其关键技术就是三角剖分

python 实现德洛内三角剖分的操作

算法步骤

1、首先任选一点,在点集中找出距离改点最近的点连成一条线,以该线为基线。

2、在所有点中寻找能与该基线构成具有空圆性三角形的点,并构成三角形。

3、以新生成的边为基线,重复第二步,直至点集构网完成。

具体代码如下

所使用的python版本为python3.6,编辑器为Pycharm2018.3.1

#-*- coding:utf-8 -*-
import tkinter
from tkinter import filedialog
import csv
#根据两点坐标计算距离
def caldis(x1,y1,x2,y2):
    return ((x1-x2)**2+(y1-y2)**2)**0.5
#输入三角形三个顶点,计算外接圆圆心及半径
def calcenter(x1,y1,x2,y2,x3,y3):
    y1=-y1  #计算公式是根据平面直角坐标推算的,原点在左下角,但是计算机屏幕坐标原点在右上角,所以计算式y坐标取负
    y2=-y2
    y3=-y3
    if (y1 != y3 and y1 != y2 and y2 != y3): #判断是否有y坐标相等,即三角形某边斜率为0的情况,避免出现坟分母为0的错误
        if(((x3-x1)/(y3-y1))-((x2-x1)/(y2-y1)))==0:
            x2=x2+1
        x=(((y1+y3)/2)+((x1+x3)/2)*((x3-x1)/(y3-y1))-((y1+y2)/2)-((x1+x2)/2)*((x2-x1)/(y2-y1)))/(((x3-x1)/(y3-y1))-((x2-x1)/(y2-y1)))
        y=-((x3-x1)/(y3-y1))*x+((y1+y3)/2)+(((x1+x3)/2)*((x3-x1)/(y3-y1)))
        return (x, -y, caldis(x, y, x1, y1))
    elif (y1 == y3 and y1 != y2 and y2 != y3):#若存在斜率为0的边则计算可简化
        x=(x1+x3)/2
        y=-((x2-x1)/(y2-y1))*x+((y1+y2)/2)+((x2-x1)/(y2-y1))*((x1+x2)/2)
        return (x, -y, caldis(x, y, x1, y1)) #返回值为元组(圆心横坐标x,圆心纵坐标y,外接圆半径r),计算出来的y值要返回屏幕坐标所以再次取负
    elif (y1 != y3 and y1 == y2 and y2 != y3):
        x = (x1 + x2) / 2
        y = -((x3 - x1) / (y3 - y1)) * x + ((y1 + y3) / 2) + ((x3 - x1) / (y3 - y1)) * ((x1 + x3) / 2)
        return (x, -y, caldis(x, y, x1, y1))
    elif (y1 != y3 and y1 != y2 and y2 == y3):
        x = (x3 + x2) / 2
        y = -((x3 - x1) / (y3 - y1)) * x + ((y1 + y3) / 2) + ((x3 - x1) / (y3 - y1)) * ((x1 + x3) / 2)
        return (x, -y, caldis(x, y, x1, y1))
    else:
        return None
class getTIN: #定义窗口及操作类
    def __init__(self):
        self.path=str() #坐标文件路径
        self.pointlist=[] #存放所有点坐标的列表
        self.linelist=[] #存放线的列表,每条线用两个点号表示连线
        self.tk=tkinter.Tk() #定义主窗口
        self.tk.title('MyTIN')
        self.tk.geometry('1200x720')
        self.shengzhang=tkinter.Button(self.tk,text='生长算法',width=15,command=self.drawTIN_shengzhang)
        self.shengzhang.place(x=1050,y=100)  #定义按钮,关联到生长算法计算TIN的的函数
        self.readin=tkinter.Button(self.tk,text='读入坐标文件',width=15,command=self.getfile)
        self.readin.place(x=1050,y=50)
        self.can=tkinter.Canvas(self.tk,width=950,height=620,bg='white')
        self.can.place(x=50,y=50)
        self.tk.mainloop()
    def getfile(self):  #选择坐标文件(*.csv),从文件中读入坐标存入pointlist列表并在绘图区展示出来
        self.path=filedialog.askopenfilename()
        f=open(self.path,'r')
        fd=csv.reader(f)
        self.pointlist=list(fd)
        for i in range(0,len(self.pointlist)):
            self.can.create_oval(int(self.pointlist[i][0])-2,int(self.pointlist[i][1])-2,int(self.pointlist[i][0])+2,int(self.pointlist[i][1])+2,fill='black')
            self.can.create_text(int(self.pointlist[i][0])+7,int(self.pointlist[i][1])-7,text=str(i))
    def drawTIN_shengzhang(self):
        j = 1
        k = 0
        mindis = ((int(self.pointlist[0][0]) - int(self.pointlist[1][0])) ** 2 + (int(self.pointlist[0][1]) - int(self.pointlist[1][1])) ** 2) ** 0.5
        x = len(self.pointlist)
        for i in range(1, x):
            dis = ((int(self.pointlist[0][0]) - int(self.pointlist[i][0])) ** 2 + (int(self.pointlist[0][1]) - int(self.pointlist[i][1])) ** 2) ** 0.5
            if dis < mindis:
                mindis = dis
                j = i
        self.linelist.append((k,j)) #首先计算出距起始点(点号为0)距离最短的点,以这两点的连线作为基线开始生长
        self.shengzhangjixian(k,j)
    def drawTIN(self): #根据线文件在绘图区绘制出TIN
        for i in self.linelist:
            self.can.create_line(self.pointlist[i[0]][0], self.pointlist[i[0]][1], self.pointlist[i[1]][0], self.pointlist[i[1]][1])
    def shengzhangjixian(self,i,j): #根据某一基线开始生长的函数
        x = len(self.pointlist)
        for k in range(0,x): #遍历没一个点,判断是否与基线构成D三角形
            n = 0 #n用于统计外接圆内的点数
            if ((k,i) not in self.linelist) and ((i,k) not in self.linelist) and ((j,k) not in self.linelist) and ((k,j) not in self.linelist):
                for y in range(0,x): #遍历每一个点,判断
                    if y==i or y==j or y==k:
                        continue
                    if(calcenter(int(self.pointlist[i][0]),int(self.pointlist[i][1]),int(self.pointlist[j][0]),int(self.pointlist[j][1]),int(self.pointlist[k][0]),int(self.pointlist[k][1]))==None):
                        continue
                    else:
                        xyr=calcenter(int(self.pointlist[i][0]),int(self.pointlist[i][1]),int(self.pointlist[j][0]),int(self.pointlist[j][1]),int(self.pointlist[k][0]),int(self.pointlist[k][1]))
                    if caldis(xyr[0],xyr[1],int(self.pointlist[y][0]),int(self.pointlist[y][1])) < xyr[2]: #判断点是否在外接圆内
                        n=n+1
                    else:
                        continue
            else:continue
            if n == 0: #判断是否为D三角形
                self.linelist.append((k,i)) #将新生成的边的端点号加入线列表
                self.drawTIN() #调用绘制函数绘制TIN
                self.shengzhangjixian(k,i) #以生成的新边作为基线,迭代计算
                self.linelist.append((k,j))
                self.drawTIN()
                self.shengzhangjixian(k,j)
            else:continue
if __name__ == '__main__':
    MyTIN=getTIN()

通过如下代码生成一组随机的点并存入文件

import random
import csv
from tkinter import filedialog
path=filedialog.askopenfilename()
OutAddress=open(path,'a',newline='')
csv_write = csv.writer(OutAddress,dialect='excel')
for i in range(0,20):
    x=random.randint(30,920)
    y=random.randint(30,590)
    out=(x,y)
    print(out)
    csv_write.writerow(out)

通过上面的程序我们得到一组坐标如下

550,432
81,334
517,265
842,408
369,123
502,169
271,425
213,482
588,248
94,295
344,350
500,385
912,527
801,491
838,455
104,479
760,160
706,77
227,314
764,576

将以上的点在界面中展示出来

python 实现德洛内三角剖分的操作

点击生长算法运行得到结果

python 实现德洛内三角剖分的操作

小结

生长算法在三角剖分算法中并不是什么高效的算法,其特点在于算法简单易行,但是计算量大,并且对于新插入的点无法更新,必须重新计算。

相比之下,逐点插入算法虽然计算量仍然较大(似乎三角剖分计算量都不小),但是能实现对新插入点的更新而不用重头计算。

注:文中部分图片及介绍来自百度百科。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Python 相关文章推荐
Python中optionParser模块的使用方法实例教程
Aug 29 Python
详解在Python程序中使用Cookie的教程
Apr 30 Python
python简单判断序列是否为空的方法
Jun 30 Python
python 把文件中的每一行以数组的元素放入数组中的方法
Apr 29 Python
Python使用re模块正则提取字符串中括号内的内容示例
Jun 01 Python
老生常谈python中的重载
Nov 11 Python
python 将日期戳(五位数时间)转换为标准时间
Jul 11 Python
django的聚合函数和aggregate、annotate方法使用详解
Jul 23 Python
使用Python完成15位18位身份证的互转功能
Nov 06 Python
Python 实现敏感目录扫描的示例代码
May 21 Python
Django中template for如何使用方法
Jan 31 Python
python 基于DDT实现数据驱动测试
Feb 18 Python
python 三边测量定位的实现代码
python如何读取.mtx文件
Apr 22 #Python
Python中tkinter的用户登录管理的实现
python爬虫之利用selenium模块自动登录CSDN
Python数据清洗工具之Numpy的基本操作
Python基础之Socket通信原理
python numpy中setdiff1d的用法说明
Apr 22 #Python
You might like
php中实现简单的ACL 完结篇
2011/09/07 PHP
遍历指定目录下的所有目录和文件的php代码
2011/11/27 PHP
apache+codeigniter 通过.htcaccess做动态二级域名解析
2012/07/01 PHP
解析coreseek for sphinx的使用
2013/06/21 PHP
windwos下使用php连接oracle数据库的过程分享
2014/05/26 PHP
PHP 快速排序算法详解
2014/11/10 PHP
PHP概率计算函数汇总
2015/09/13 PHP
JavaScript 申明函数的三种方法 每个函数就是一个对象(一)
2009/12/04 Javascript
JS实现在Repeater控件中创建可隐藏区域的代码
2010/09/16 Javascript
Javascript事件实例详解
2013/11/06 Javascript
jquery实现保存已选用户
2014/07/21 Javascript
jQuery调用ajax请求的常见方法汇总
2015/03/24 Javascript
简单的jQuery入门指引
2015/07/28 Javascript
div实现自适应高度的textarea实现angular双向绑定
2017/01/08 Javascript
学好js,这些js函数概念一定要知道【推荐】
2017/01/19 Javascript
jQuery.ajax向后台传递数组问题的解决方法
2017/05/12 jQuery
详细介绍RxJS在Angular中的应用
2017/09/23 Javascript
浅谈在vue项目中如何定义全局变量和全局函数
2017/10/24 Javascript
详解Angular调试技巧之报错404(not found)
2018/01/31 Javascript
微信小程序签到功能
2018/10/31 Javascript
javascript中innerHTML 获取或替换html内容的实现代码
2020/03/17 Javascript
[01:11:32]VG vs FNATIC 2019国际邀请赛小组赛 BO2 第二场 8.15
2019/08/17 DOTA
Python cookbook(数据结构与算法)实现优先级队列的方法示例
2018/02/18 Python
pytorch下大型数据集(大型图片)的导入方式
2020/01/08 Python
python encrypt 实现AES加密的实例详解
2020/02/20 Python
Python虚拟环境venv用法详解
2020/05/25 Python
用Python 执行cmd命令
2020/12/18 Python
python opencv实现图像配准与比较
2021/02/09 Python
C#里面如何倒序排列一个数组的元素?
2013/06/21 面试题
党员的自我评价范文
2014/01/02 职场文书
项目投资合作意向书
2014/07/29 职场文书
十佳少先队员演讲稿
2014/09/12 职场文书
学校财务管理制度
2015/08/04 职场文书
Golang中interface{}转为数组的操作
2021/04/30 Golang
background-position百分比原理详解
2021/05/08 HTML / CSS
根德5570型九灯四波段立体声收音机是电子管收音机的楷模 ? 再论5570
2022/04/05 无线电