Python 列表推导式需要注意的地方


Posted in Python onOctober 23, 2020

原文地址:The Do's and Don'ts of Python List Comprehension
原文作者:Yong Cui, Ph.D.
译文出自:掘金翻译计划
本文永久链接:github.com/xitu/gold-m…
译者:samyu2000
校对者:luochen1992,shixi-li

Python 列表推导式并不是给初学者用的,因为它非常反直觉,甚至对于有其他编程语言背景的人也是如此。

我们接触到 List 的使用时,学习的内容都是零散的。所以我们缺少一个关于如何在各种各样的场景下使用 List 的知识体系。

本文提供了一些 List 的使用指南,尽可能涵盖各个方面。希望本文可以成为你的一站式实用手册。

使用建议

1.建议使用迭代的方式

使用 List 最基本的方式是以一个可迭代对象为基础,创建一个 List 对象,这个可迭代对象可以是任意可以迭代元素的Python对象。使用方法如下。

[expression for item in iterable]

下面这段代码展示了一个使用列表相关技术创建 List 对象的例子。在这个例子中,我们定义了一个 Integer 列表,并基于这个对象创建了保存每个数字的平方数和立方数的 List 对象。

>>> # 创建一个 Integer 列表
>>> integers = [1, 2, 3, 4, 5, 6]
>>> # 创建平方数和立方数列表
>>> powers = [(x*x, pow(x, 3)) for x in integers]
>>> print(powers)
[(1, 1), (4, 8), (9, 27), (16, 64), (25, 125), (36, 216)]

上面的例子把 List 对象当作迭代器使用。我们应该知道,许多类型的对象也是可迭代的,比如 List、Set、Dictionary 和 String 等等。其他数据类型,像 range、map、filter,以及 pandas 包中的 Series、DataFrame,都是可迭代的。下面的代码演示了某些对象的使用方法。

>>> # 使用 range 对象
>>> integer_range = range(5)
>>> [x*x for x in integer_range]
[0, 1, 4, 9, 16]
>>> # 使用 Series 对象 
>>> import pandas as pd
>>> pd_series = pd.Series(range(5))
>>> print(pd_series)
0 0
1 1
2 2
3 3
4 4
dtype: int64
>>> [x*x for x in pd_series]
[0, 1, 4, 9, 16]

2.如果只需用到其中的某些元素,应当使用条件判断语句

假设你需要将符合某种条件的元素归集起来,并创建一个 list。下面展示了相关的语法。

[expression for item in iterable if condition]

if 语句用来实现条件判断。下面的代码展示了这种用法的一个简单示例。

>>> # 同样创建一个 Integer 列表
>>> integers = [1, 2, 3, 4, 5, 6]
>>> # 筛选出偶数,创建一个这些偶数的平方数列表
>>> squares_of_evens = [x*x for x in integers if x % 2 == 0]
>>> print((squares_of_evens))
[4, 16, 36]

3.使用条件判断语句

List 对象中还可以使用 if-else 形式的条件判断,语法如下。

[expression0 if condition else expression1 for item in iterable]

这跟前面的那种用法有些类似,别把这两种用法混淆。在本例中,条件语句本身是一个整体。下面的代码提供了一个例子。

>>> # 创建一个 Integer 列表
>>> integers = [1, 2, 3, 4, 5, 6]
>>> # 遍历 integers 中的元素,如果是偶数,取平方数存入新的列表
>>> # 如果是奇数,取立方数存入新的列表
>>> custom_powers = [x*x if x % 2 == 0 else pow(x, 3) for x in integers]
>>> print(custom_powers)
[1, 4, 27, 16, 125, 36]

4.如果有嵌套结构,可以使用嵌套的循环

有可能可迭代对象中的元素自身也是可迭代的,尽管这种情况不太常见。如果你对嵌套的可迭代对象有兴趣,可以使用 for 来实现循环嵌套。语法如下。

[expression for item_outer in iterable for item_inner in item_outer]

# 与下面的代码等同
for item_outer in iterable:
 for item_inner in item_outer:
  expression

上面的代码展示了使用for实现嵌套循环的例子。

>>> # 创建一个包含元组的列表
>>> prices = [('$5.99', '$4.99'), ('$3.5', '$4.5')]
>>> # 获取元组中的每个价格,以此创建一个一维列表
>>> prices_formatted = [float(x[1:]) for price_group in prices for x in price_group]
>>> print(prices_formatted)
[5.99, 4.99, 3.5, 4.5]

5.替换高阶函数

有的人比较习惯函数式编程,比如使用高阶函数也是这种习惯的表现之一。特别说明一下,高阶函数是那些需要使用输入或输出参数的函数。在 Python 中,常用的高阶函数有 map() 和 filter()。

>>> # 创建一个 integer 类型的列表
>>> integers = [1, 2, 3, 4, 5]
>>> # 使用 map 创建平方数列表
>>> squares_mapped = list(map(lambda x: x*x, integers))
>>> squares_mapped
[1, 4, 9, 16, 25]
>>> # 使用列表推导式创建平方数列表
>>> squares_listcomp = [x*x for x in integers]
>>> squares_listcomp
[1, 4, 9, 16, 25]
>>> # 使用 filter 取得 integers 中的偶数列表
>>> filtered_filter = list(filter(lambda x: x % 2 == 0, integers))
>>> filtered_filter
[2, 4]
>>> # 使用列表推导式取得 integers 中的偶数列表
>>> filterd_listcomp = [x for x in integers if x % 2 == 0]
>>> filterd_listcomp
[2, 4]

从上面的例子可以看出,使用 list 的某些特性比使用高阶函数更具有可读性,而且也能实现较复杂的嵌套结构。

使用禁忌

1.不要忘了定义构造函数

有人认为列表推导式很酷炫,是 Python 特有的功能,所以为了炫耀自己的 Python 水平,即使有更好替代方案也要使用它。

>>> # 使用 range 创建列表对象
>>> numbers = [x for x in range(5)]
>>> print(numbers)
[0, 1, 2, 3, 4]
>>> # 以一个字符串为基础,创建一个小写字母的字符列表
>>> letters = [x.lower() for x in 'Smith']
>>> print(letters)
['s', 'm', 'i', 't', 'h']

上述例子中,我们使用了 range 和 string,这两种数据结构都是可迭代的,list()构造函数可以直接使用 iterable 创建一个 list 对象。下面的代码提供了更合理的解决方案。

>>> # 使用 range 创建列表对象
>>> numbers = list(range(5))
>>> print(numbers)
[0, 1, 2, 3, 4]
>>> # 以一个字符串为基础,创建一个小写字母的字符列表
>>> letters = list('Smith'.lower())
>>> print(letters)
['s', 'm', 'i', 't', 'h']

2.不要忘了生成器表达式

在 Python 中,生成器是一种特殊的可迭代对象,它会延迟加载元素,直到被请求才会加载。这在处理大量数据时会非常高效,它能提升存储效率。相比之下,list 对象为了方便计数和索引,一次性创建所有的元素。所以跟生成器相比,在元素个数相同时,list 需要占用更多内存。

我们可以定义一个生成器函数来创建生成器。我们也可以使用下面的语句来创建生成器,这是一种称为生成器表达式的方法。

(expression for item in iterable)

你可能会注意到,除了使用圆括号外,它的语法跟使用 list 的语句很相似。所以需要注意区分。

考虑下面这个例子。我们要计算前一百万个数字的平方和。如果使用 list 来实现,方法如下。

>>> # 创建列表对象 squares 
>>> squares = [x*x for x in range(10_000_000)]
>>> # 计算它们的总和
>>> sum(squares)
333333283333335000000
>>> squares.__sizeof__()
81528032

跟使用 list 相比,使用 generator 内存开销小得多,只有 96 字节。原因很简单———— generator 不需要获取所有的元素。相反,它只需要获取各个元素在序列中的位置,创建下一个元素并呈现它,而且不必保存在内存中。

结论

本文中,我们整理了 list 应用的一些关键要领。这些该做的和不该做的都非常清晰明了。我估计你会在合适的场景中用到它。下面是本文内容的小结。

  • 使用迭代的方式。 Python 中有许多类型的 iterable,你应当在掌握基础(list 和 tuple)的同时融会贯通。
  • 使用条件判断语句。 如果你对在 iterable 中筛选某些元素感兴趣,可以多多研究条件判断。
  • 使用条件判断表达式。 如果你需要有选择性地获取某些数据,可以使用条件判断表达式。
  • 使用嵌套的循环。 如果你要处理嵌套的 iterable,可以使用嵌套的循环结构。
  • 用 list 替代高阶函数 在很多情况下,可以用 list 替代高阶函数。
  • 不要忘记 list 的构造函数 定义 list 的构造函数,可以使用 iterable 创建一个 list 对象。如果你直接使用 iterable,推荐用这个方法。
  • 不要忘了生成器表达式 它的语法与 list 中的语法相似。在处理大量的对象时,这是一种节省内存开销的办法。list 和 generator 不同的是,为了日后的索引和访问, list 必须提前创建,如果元素个数很多,就会消耗很大的内存。

以上就是Python 列表推导式需要注意的地方的详细内容,更多关于Python 列表推导式的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
NumPy.npy与pandas DataFrame的实例讲解
Jul 09 Python
在cmder下安装ipython以及环境的搭建
Oct 19 Python
python2和python3的输入和输出区别介绍
Nov 20 Python
对python打乱数据集中X,y标签对的方法详解
Dec 14 Python
python修改字典键(key)的方法
Aug 05 Python
如何用Python来理一理红楼梦里的那些关系
Aug 14 Python
python使用OpenCV模块实现图像的融合示例代码
Apr 10 Python
关于keras中keras.layers.merge的用法说明
May 23 Python
详解Python中import机制
Sep 11 Python
使用python-cv2实现Harr+Adaboost人脸识别的示例
Oct 27 Python
详解Django中的FBV和CBV对比分析
Mar 01 Python
python中redis包操作数据库的教程
Apr 19 Python
python中的split、rsplit、splitlines用法说明
Oct 23 #Python
Python学习工具jupyter notebook安装及用法解析
Oct 23 #Python
浅析关于Keras的安装(pycharm)和初步理解
Oct 23 #Python
基于Python爬取京东双十一商品价格曲线
Oct 23 #Python
Python绘图实现台风路径可视化代码实例
Oct 23 #Python
Python实现JS解密并爬取某音漫客网站
Oct 23 #Python
解决Python 写文件报错TypeError的问题
Oct 23 #Python
You might like
用PHP读注册表
2006/10/09 PHP
laravel创建类似ThinPHP中functions.php的全局函数
2016/11/26 PHP
分享27个jQuery 表单插件集合推荐
2011/04/25 Javascript
JavaScript中exec函数用法实例分析
2015/06/08 Javascript
JavaScript转换与解析JSON方法实例详解
2015/11/24 Javascript
JS如何判断是否为ie浏览器的方法(包括IE10、IE11在内)
2015/12/13 Javascript
JavaScript获取当前cpu使用率的方法
2015/12/15 Javascript
JS密码生成与强度检测完整实例(附demo源码下载)
2016/04/06 Javascript
浅析$.getJSON异步请求和同步请求
2016/06/06 Javascript
基于jQuery和hwSlider实现内容左右滑动切换效果附源码下载(一)
2016/06/22 Javascript
简单的js表格操作
2016/09/24 Javascript
一个极为简单的requirejs实现方法
2016/10/20 Javascript
jQuery实现优雅的弹窗效果(6)
2017/02/08 Javascript
微信小程序 图片上传实例详解
2017/05/05 Javascript
JS给按钮添加跳转功能类似a标签
2017/05/30 Javascript
iscroll实现下拉刷新功能
2017/07/18 Javascript
Nodejs连接mysql并实现增、删、改、查操作的方法详解
2018/01/04 NodeJs
vue2实现搜索结果中的搜索关键字高亮的代码
2018/08/29 Javascript
javascript实现文本框标签验证的实例代码
2018/10/14 Javascript
Vue axios全局拦截 get请求、post请求、配置请求的实例代码
2018/11/28 Javascript
ionic4+angular7+cordova上传图片功能的实例代码
2019/06/19 Javascript
JS字符串常用操作方法实例小结
2019/06/24 Javascript
JS实现电脑虚拟键盘的操作
2020/06/24 Javascript
Python中实现远程调用(RPC、RMI)简单例子
2014/04/28 Python
Python的Flask框架标配模板引擎Jinja2的使用教程
2016/07/12 Python
Python类的动态修改的实例方法
2017/03/24 Python
python实现二叉树的遍历
2017/12/11 Python
python程序变成软件的实操方法
2019/06/24 Python
Python分析彩票记录并预测中奖号码过程详解
2019/07/09 Python
自适应线性神经网络Adaline的python实现详解
2019/09/30 Python
基于Python实现体育彩票选号器功能代码实例
2020/09/16 Python
HTML5的Video标签有部分MP4无法播放的问题解析(多图)
2017/08/18 HTML / CSS
基于 HTML5 WebGL 实现的医疗物流系统
2019/10/08 HTML / CSS
莫斯科隐形眼镜网上商店:Linzi
2019/07/22 全球购物
工厂保洁员岗位职责
2013/12/04 职场文书
电大毕业生自我鉴定
2014/04/10 职场文书