Python实现Keras搭建神经网络训练分类模型教程


Posted in Python onJune 12, 2020

我就废话不多说了,大家还是直接看代码吧~

注释讲解版:

# Classifier example

import numpy as np
# for reproducibility
np.random.seed(1337)
# from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop

# 程序中用到的数据是经典的手写体识别mnist数据集
# download the mnist to the path if it is the first time to be called
# X shape (60,000 28x28), y
# (X_train, y_train), (X_test, y_test) = mnist.load_data()
# 下载minst.npz:
# 链接: https://pan.baidu.com/s/1b2ppKDOdzDJxivgmyOoQsA
# 提取码: y5ir
# 将下载好的minst.npz放到当前目录下
path='./mnist.npz'
f = np.load(path)
X_train, y_train = f['x_train'], f['y_train']
X_test, y_test = f['x_test'], f['y_test']
f.close()

# data pre-processing
# 数据预处理
# normalize
# X shape (60,000 28x28),表示输入数据 X 是个三维的数据
# 可以理解为 60000行数据,每一行是一张28 x 28 的灰度图片
# X_train.reshape(X_train.shape[0], -1)表示:只保留第一维,其余的纬度,不管多少纬度,重新排列为一维
# 参数-1就是不知道行数或者列数多少的情况下使用的参数
# 所以先确定除了参数-1之外的其他参数,然后通过(总参数的计算) / (确定除了参数-1之外的其他参数) = 该位置应该是多少的参数
# 这里用-1是偷懒的做法,等同于 28*28
# reshape后的数据是:共60000行,每一行是784个数据点(feature)
# 输入的 x 变成 60,000*784 的数据,然后除以 255 进行标准化
# 因为每个像素都是在 0 到 255 之间的,标准化之后就变成了 0 到 1 之间
X_train = X_train.reshape(X_train.shape[0], -1) / 255
X_test = X_test.reshape(X_test.shape[0], -1) / 255
# 分类标签编码
# 将y转化为one-hot vector
y_train = np_utils.to_categorical(y_train, num_classes = 10)
y_test = np_utils.to_categorical(y_test, num_classes = 10)

# Another way to build your neural net
# 建立神经网络
# 应用了2层的神经网络,前一层的激活函数用的是relu,后一层的激活函数用的是softmax
#32是输出的维数
model = Sequential([
  Dense(32, input_dim=784),
  Activation('relu'),
  Dense(10),
  Activation('softmax')
])

# Another way to define your optimizer
# 优化函数
# 优化算法用的是RMSprop
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)

# We add metrics to get more results you want to see
# 不自己定义,直接用内置的优化器也行,optimizer='rmsprop'
#激活模型:接下来用 model.compile 激励神经网络
model.compile(
  optimizer=rmsprop,
  loss='categorical_crossentropy',
  metrics=['accuracy']
)

print('Training------------')
# Another way to train the model
# 训练模型
# 上一个程序是用train_on_batch 一批一批的训练 X_train, Y_train
# 默认的返回值是 cost,每100步输出一下结果
# 输出的样式与上一个程序的有所不同,感觉用model.fit()更清晰明了
# 上一个程序是Python实现Keras搭建神经网络训练回归模型:
# https://blog.csdn.net/weixin_45798684/article/details/106503685
model.fit(X_train, y_train, nb_epoch=2, batch_size=32)

print('\nTesting------------')
# Evaluate the model with the metrics we defined earlier
# 测试
loss, accuracy = model.evaluate(X_test, y_test)

print('test loss:', loss)
print('test accuracy:', accuracy)

运行结果:

Using TensorFlow backend.

Training------------

Epoch 1/2

  32/60000 [..............................] - ETA: 5:03 - loss: 2.4464 - accuracy: 0.0625
 864/60000 [..............................] - ETA: 14s - loss: 1.8023 - accuracy: 0.4850 
 1696/60000 [..............................] - ETA: 9s - loss: 1.5119 - accuracy: 0.6002 
 2432/60000 [>.............................] - ETA: 7s - loss: 1.3151 - accuracy: 0.6637
 3200/60000 [>.............................] - ETA: 6s - loss: 1.1663 - accuracy: 0.7056
 3968/60000 [>.............................] - ETA: 5s - loss: 1.0533 - accuracy: 0.7344
 4704/60000 [=>............................] - ETA: 5s - loss: 0.9696 - accuracy: 0.7564
 5408/60000 [=>............................] - ETA: 5s - loss: 0.9162 - accuracy: 0.7681
 6112/60000 [==>...........................] - ETA: 5s - loss: 0.8692 - accuracy: 0.7804
 6784/60000 [==>...........................] - ETA: 4s - loss: 0.8225 - accuracy: 0.7933
 7424/60000 [==>...........................] - ETA: 4s - loss: 0.7871 - accuracy: 0.8021
 8128/60000 [===>..........................] - ETA: 4s - loss: 0.7546 - accuracy: 0.8099
 8960/60000 [===>..........................] - ETA: 4s - loss: 0.7196 - accuracy: 0.8183
 9568/60000 [===>..........................] - ETA: 4s - loss: 0.6987 - accuracy: 0.8230
10144/60000 [====>.........................] - ETA: 4s - loss: 0.6812 - accuracy: 0.8262
10784/60000 [====>.........................] - ETA: 4s - loss: 0.6640 - accuracy: 0.8297
11456/60000 [====>.........................] - ETA: 4s - loss: 0.6462 - accuracy: 0.8329
12128/60000 [=====>........................] - ETA: 4s - loss: 0.6297 - accuracy: 0.8366
12704/60000 [=====>........................] - ETA: 4s - loss: 0.6156 - accuracy: 0.8405
13408/60000 [=====>........................] - ETA: 3s - loss: 0.6009 - accuracy: 0.8430
14112/60000 [======>.......................] - ETA: 3s - loss: 0.5888 - accuracy: 0.8457
14816/60000 [======>.......................] - ETA: 3s - loss: 0.5772 - accuracy: 0.8487
15488/60000 [======>.......................] - ETA: 3s - loss: 0.5685 - accuracy: 0.8503
16192/60000 [=======>......................] - ETA: 3s - loss: 0.5576 - accuracy: 0.8534
16896/60000 [=======>......................] - ETA: 3s - loss: 0.5477 - accuracy: 0.8555
17600/60000 [=======>......................] - ETA: 3s - loss: 0.5380 - accuracy: 0.8576
18240/60000 [========>.....................] - ETA: 3s - loss: 0.5279 - accuracy: 0.8600
18976/60000 [========>.....................] - ETA: 3s - loss: 0.5208 - accuracy: 0.8617
19712/60000 [========>.....................] - ETA: 3s - loss: 0.5125 - accuracy: 0.8634
20416/60000 [=========>....................] - ETA: 3s - loss: 0.5046 - accuracy: 0.8654
21088/60000 [=========>....................] - ETA: 3s - loss: 0.4992 - accuracy: 0.8669
21792/60000 [=========>....................] - ETA: 3s - loss: 0.4932 - accuracy: 0.8684
22432/60000 [==========>...................] - ETA: 3s - loss: 0.4893 - accuracy: 0.8693
23072/60000 [==========>...................] - ETA: 2s - loss: 0.4845 - accuracy: 0.8703
23648/60000 [==========>...................] - ETA: 2s - loss: 0.4800 - accuracy: 0.8712
24096/60000 [===========>..................] - ETA: 2s - loss: 0.4776 - accuracy: 0.8718
24576/60000 [===========>..................] - ETA: 2s - loss: 0.4733 - accuracy: 0.8728
25056/60000 [===========>..................] - ETA: 2s - loss: 0.4696 - accuracy: 0.8736
25568/60000 [===========>..................] - ETA: 2s - loss: 0.4658 - accuracy: 0.8745
26080/60000 [============>.................] - ETA: 2s - loss: 0.4623 - accuracy: 0.8753
26592/60000 [============>.................] - ETA: 2s - loss: 0.4600 - accuracy: 0.8756
27072/60000 [============>.................] - ETA: 2s - loss: 0.4566 - accuracy: 0.8763
27584/60000 [============>.................] - ETA: 2s - loss: 0.4532 - accuracy: 0.8771
28032/60000 [=============>................] - ETA: 2s - loss: 0.4513 - accuracy: 0.8775
28512/60000 [=============>................] - ETA: 2s - loss: 0.4477 - accuracy: 0.8784
28992/60000 [=============>................] - ETA: 2s - loss: 0.4464 - accuracy: 0.8786
29472/60000 [=============>................] - ETA: 2s - loss: 0.4439 - accuracy: 0.8791
29952/60000 [=============>................] - ETA: 2s - loss: 0.4404 - accuracy: 0.8800
30464/60000 [==============>...............] - ETA: 2s - loss: 0.4375 - accuracy: 0.8807
30784/60000 [==============>...............] - ETA: 2s - loss: 0.4349 - accuracy: 0.8813
31296/60000 [==============>...............] - ETA: 2s - loss: 0.4321 - accuracy: 0.8820
31808/60000 [==============>...............] - ETA: 2s - loss: 0.4301 - accuracy: 0.8827
32256/60000 [===============>..............] - ETA: 2s - loss: 0.4279 - accuracy: 0.8832
32736/60000 [===============>..............] - ETA: 2s - loss: 0.4258 - accuracy: 0.8838
33280/60000 [===============>..............] - ETA: 2s - loss: 0.4228 - accuracy: 0.8844
33920/60000 [===============>..............] - ETA: 2s - loss: 0.4195 - accuracy: 0.8849
34560/60000 [================>.............] - ETA: 2s - loss: 0.4179 - accuracy: 0.8852
35104/60000 [================>.............] - ETA: 2s - loss: 0.4165 - accuracy: 0.8854
35680/60000 [================>.............] - ETA: 2s - loss: 0.4139 - accuracy: 0.8860
36288/60000 [=================>............] - ETA: 2s - loss: 0.4111 - accuracy: 0.8870
36928/60000 [=================>............] - ETA: 2s - loss: 0.4088 - accuracy: 0.8874
37504/60000 [=================>............] - ETA: 2s - loss: 0.4070 - accuracy: 0.8878
38048/60000 [==================>...........] - ETA: 1s - loss: 0.4052 - accuracy: 0.8882
38656/60000 [==================>...........] - ETA: 1s - loss: 0.4031 - accuracy: 0.8888
39264/60000 [==================>...........] - ETA: 1s - loss: 0.4007 - accuracy: 0.8894
39840/60000 [==================>...........] - ETA: 1s - loss: 0.3997 - accuracy: 0.8896
40416/60000 [===================>..........] - ETA: 1s - loss: 0.3978 - accuracy: 0.8901
40960/60000 [===================>..........] - ETA: 1s - loss: 0.3958 - accuracy: 0.8906
41504/60000 [===================>..........] - ETA: 1s - loss: 0.3942 - accuracy: 0.8911
42016/60000 [====================>.........] - ETA: 1s - loss: 0.3928 - accuracy: 0.8915
42592/60000 [====================>.........] - ETA: 1s - loss: 0.3908 - accuracy: 0.8920
43168/60000 [====================>.........] - ETA: 1s - loss: 0.3889 - accuracy: 0.8924
43744/60000 [====================>.........] - ETA: 1s - loss: 0.3868 - accuracy: 0.8931
44288/60000 [=====================>........] - ETA: 1s - loss: 0.3864 - accuracy: 0.8931
44832/60000 [=====================>........] - ETA: 1s - loss: 0.3842 - accuracy: 0.8938
45408/60000 [=====================>........] - ETA: 1s - loss: 0.3822 - accuracy: 0.8944
45984/60000 [=====================>........] - ETA: 1s - loss: 0.3804 - accuracy: 0.8949
46560/60000 [======================>.......] - ETA: 1s - loss: 0.3786 - accuracy: 0.8953
47168/60000 [======================>.......] - ETA: 1s - loss: 0.3767 - accuracy: 0.8958
47808/60000 [======================>.......] - ETA: 1s - loss: 0.3744 - accuracy: 0.8963
48416/60000 [=======================>......] - ETA: 1s - loss: 0.3732 - accuracy: 0.8966
48928/60000 [=======================>......] - ETA: 0s - loss: 0.3714 - accuracy: 0.8971
49440/60000 [=======================>......] - ETA: 0s - loss: 0.3701 - accuracy: 0.8974
50048/60000 [========================>.....] - ETA: 0s - loss: 0.3678 - accuracy: 0.8979
50688/60000 [========================>.....] - ETA: 0s - loss: 0.3669 - accuracy: 0.8983
51264/60000 [========================>.....] - ETA: 0s - loss: 0.3654 - accuracy: 0.8988
51872/60000 [========================>.....] - ETA: 0s - loss: 0.3636 - accuracy: 0.8992
52608/60000 [=========================>....] - ETA: 0s - loss: 0.3618 - accuracy: 0.8997
53376/60000 [=========================>....] - ETA: 0s - loss: 0.3599 - accuracy: 0.9003
54048/60000 [==========================>...] - ETA: 0s - loss: 0.3583 - accuracy: 0.9006
54560/60000 [==========================>...] - ETA: 0s - loss: 0.3568 - accuracy: 0.9010
55296/60000 [==========================>...] - ETA: 0s - loss: 0.3548 - accuracy: 0.9016
56064/60000 [===========================>..] - ETA: 0s - loss: 0.3526 - accuracy: 0.9021
56736/60000 [===========================>..] - ETA: 0s - loss: 0.3514 - accuracy: 0.9026
57376/60000 [===========================>..] - ETA: 0s - loss: 0.3499 - accuracy: 0.9029
58112/60000 [============================>.] - ETA: 0s - loss: 0.3482 - accuracy: 0.9033
58880/60000 [============================>.] - ETA: 0s - loss: 0.3459 - accuracy: 0.9039
59584/60000 [============================>.] - ETA: 0s - loss: 0.3444 - accuracy: 0.9043
60000/60000 [==============================] - 5s 87us/step - loss: 0.3435 - accuracy: 0.9046

Epoch 2/2

  32/60000 [..............................] - ETA: 11s - loss: 0.0655 - accuracy: 1.0000
 736/60000 [..............................] - ETA: 4s - loss: 0.2135 - accuracy: 0.9389 
 1408/60000 [..............................] - ETA: 4s - loss: 0.2217 - accuracy: 0.9361
 1984/60000 [..............................] - ETA: 4s - loss: 0.2316 - accuracy: 0.9390
 2432/60000 [>.............................] - ETA: 4s - loss: 0.2280 - accuracy: 0.9379
 3040/60000 [>.............................] - ETA: 4s - loss: 0.2374 - accuracy: 0.9368
 3808/60000 [>.............................] - ETA: 4s - loss: 0.2251 - accuracy: 0.9386
 4576/60000 [=>............................] - ETA: 4s - loss: 0.2225 - accuracy: 0.9379
 5216/60000 [=>............................] - ETA: 4s - loss: 0.2208 - accuracy: 0.9377
 5920/60000 [=>............................] - ETA: 4s - loss: 0.2173 - accuracy: 0.9383
 6656/60000 [==>...........................] - ETA: 4s - loss: 0.2217 - accuracy: 0.9370
 7392/60000 [==>...........................] - ETA: 4s - loss: 0.2224 - accuracy: 0.9360
 8096/60000 [===>..........................] - ETA: 4s - loss: 0.2234 - accuracy: 0.9363
 8800/60000 [===>..........................] - ETA: 3s - loss: 0.2235 - accuracy: 0.9358
 9408/60000 [===>..........................] - ETA: 3s - loss: 0.2196 - accuracy: 0.9365
10016/60000 [====>.........................] - ETA: 3s - loss: 0.2207 - accuracy: 0.9363
10592/60000 [====>.........................] - ETA: 3s - loss: 0.2183 - accuracy: 0.9369
11168/60000 [====>.........................] - ETA: 3s - loss: 0.2177 - accuracy: 0.9377
11776/60000 [====>.........................] - ETA: 3s - loss: 0.2154 - accuracy: 0.9385
12544/60000 [=====>........................] - ETA: 3s - loss: 0.2152 - accuracy: 0.9393
13216/60000 [=====>........................] - ETA: 3s - loss: 0.2163 - accuracy: 0.9390
13920/60000 [=====>........................] - ETA: 3s - loss: 0.2155 - accuracy: 0.9391
14624/60000 [======>.......................] - ETA: 3s - loss: 0.2150 - accuracy: 0.9391
15424/60000 [======>.......................] - ETA: 3s - loss: 0.2143 - accuracy: 0.9398
16032/60000 [=======>......................] - ETA: 3s - loss: 0.2122 - accuracy: 0.9405
16672/60000 [=======>......................] - ETA: 3s - loss: 0.2096 - accuracy: 0.9409
17344/60000 [=======>......................] - ETA: 3s - loss: 0.2091 - accuracy: 0.9411
18112/60000 [========>.....................] - ETA: 3s - loss: 0.2086 - accuracy: 0.9416
18784/60000 [========>.....................] - ETA: 3s - loss: 0.2084 - accuracy: 0.9418
19392/60000 [========>.....................] - ETA: 3s - loss: 0.2076 - accuracy: 0.9418
20000/60000 [=========>....................] - ETA: 3s - loss: 0.2067 - accuracy: 0.9421
20608/60000 [=========>....................] - ETA: 3s - loss: 0.2071 - accuracy: 0.9419
21184/60000 [=========>....................] - ETA: 3s - loss: 0.2056 - accuracy: 0.9423
21856/60000 [=========>....................] - ETA: 3s - loss: 0.2063 - accuracy: 0.9419
22624/60000 [==========>...................] - ETA: 2s - loss: 0.2059 - accuracy: 0.9421
23328/60000 [==========>...................] - ETA: 2s - loss: 0.2056 - accuracy: 0.9422
23936/60000 [==========>...................] - ETA: 2s - loss: 0.2051 - accuracy: 0.9423
24512/60000 [===========>..................] - ETA: 2s - loss: 0.2041 - accuracy: 0.9424
25248/60000 [===========>..................] - ETA: 2s - loss: 0.2036 - accuracy: 0.9426
26016/60000 [============>.................] - ETA: 2s - loss: 0.2031 - accuracy: 0.9424
26656/60000 [============>.................] - ETA: 2s - loss: 0.2035 - accuracy: 0.9422
27360/60000 [============>.................] - ETA: 2s - loss: 0.2050 - accuracy: 0.9417
28128/60000 [=============>................] - ETA: 2s - loss: 0.2045 - accuracy: 0.9418
28896/60000 [=============>................] - ETA: 2s - loss: 0.2046 - accuracy: 0.9418
29536/60000 [=============>................] - ETA: 2s - loss: 0.2052 - accuracy: 0.9417
30208/60000 [==============>...............] - ETA: 2s - loss: 0.2050 - accuracy: 0.9417
30848/60000 [==============>...............] - ETA: 2s - loss: 0.2046 - accuracy: 0.9419
31552/60000 [==============>...............] - ETA: 2s - loss: 0.2037 - accuracy: 0.9421
32224/60000 [===============>..............] - ETA: 2s - loss: 0.2043 - accuracy: 0.9420
32928/60000 [===============>..............] - ETA: 2s - loss: 0.2041 - accuracy: 0.9420
33632/60000 [===============>..............] - ETA: 2s - loss: 0.2035 - accuracy: 0.9422
34272/60000 [================>.............] - ETA: 1s - loss: 0.2029 - accuracy: 0.9423
34944/60000 [================>.............] - ETA: 1s - loss: 0.2030 - accuracy: 0.9423
35648/60000 [================>.............] - ETA: 1s - loss: 0.2027 - accuracy: 0.9422
36384/60000 [=================>............] - ETA: 1s - loss: 0.2027 - accuracy: 0.9421
37120/60000 [=================>............] - ETA: 1s - loss: 0.2024 - accuracy: 0.9421
37760/60000 [=================>............] - ETA: 1s - loss: 0.2013 - accuracy: 0.9424
38464/60000 [==================>...........] - ETA: 1s - loss: 0.2011 - accuracy: 0.9424
39200/60000 [==================>...........] - ETA: 1s - loss: 0.2000 - accuracy: 0.9426
40000/60000 [===================>..........] - ETA: 1s - loss: 0.1990 - accuracy: 0.9428
40672/60000 [===================>..........] - ETA: 1s - loss: 0.1986 - accuracy: 0.9430
41344/60000 [===================>..........] - ETA: 1s - loss: 0.1982 - accuracy: 0.9432
42112/60000 [====================>.........] - ETA: 1s - loss: 0.1981 - accuracy: 0.9432
42848/60000 [====================>.........] - ETA: 1s - loss: 0.1977 - accuracy: 0.9433
43552/60000 [====================>.........] - ETA: 1s - loss: 0.1970 - accuracy: 0.9435
44256/60000 [=====================>........] - ETA: 1s - loss: 0.1972 - accuracy: 0.9436
44992/60000 [=====================>........] - ETA: 1s - loss: 0.1972 - accuracy: 0.9437
45664/60000 [=====================>........] - ETA: 1s - loss: 0.1966 - accuracy: 0.9438
46176/60000 [======================>.......] - ETA: 1s - loss: 0.1968 - accuracy: 0.9437
46752/60000 [======================>.......] - ETA: 1s - loss: 0.1969 - accuracy: 0.9438
47488/60000 [======================>.......] - ETA: 0s - loss: 0.1965 - accuracy: 0.9439
48256/60000 [=======================>......] - ETA: 0s - loss: 0.1965 - accuracy: 0.9438
48896/60000 [=======================>......] - ETA: 0s - loss: 0.1963 - accuracy: 0.9436
49568/60000 [=======================>......] - ETA: 0s - loss: 0.1962 - accuracy: 0.9438
50304/60000 [========================>.....] - ETA: 0s - loss: 0.1965 - accuracy: 0.9437
51072/60000 [========================>.....] - ETA: 0s - loss: 0.1967 - accuracy: 0.9437
51744/60000 [========================>.....] - ETA: 0s - loss: 0.1961 - accuracy: 0.9439
52480/60000 [=========================>....] - ETA: 0s - loss: 0.1957 - accuracy: 0.9439
53248/60000 [=========================>....] - ETA: 0s - loss: 0.1959 - accuracy: 0.9438
54016/60000 [==========================>...] - ETA: 0s - loss: 0.1963 - accuracy: 0.9437
54592/60000 [==========================>...] - ETA: 0s - loss: 0.1965 - accuracy: 0.9436
55168/60000 [==========================>...] - ETA: 0s - loss: 0.1962 - accuracy: 0.9436
55776/60000 [==========================>...] - ETA: 0s - loss: 0.1959 - accuracy: 0.9437
56448/60000 [===========================>..] - ETA: 0s - loss: 0.1965 - accuracy: 0.9437
57152/60000 [===========================>..] - ETA: 0s - loss: 0.1958 - accuracy: 0.9439
57824/60000 [===========================>..] - ETA: 0s - loss: 0.1956 - accuracy: 0.9438
58560/60000 [============================>.] - ETA: 0s - loss: 0.1951 - accuracy: 0.9440
59360/60000 [============================>.] - ETA: 0s - loss: 0.1947 - accuracy: 0.9440
60000/60000 [==============================] - 5s 76us/step - loss: 0.1946 - accuracy: 0.9440

Testing------------

  32/10000 [..............................] - ETA: 15s
 1248/10000 [==>...........................] - ETA: 0s 
 2656/10000 [======>.......................] - ETA: 0s
 4064/10000 [===========>..................] - ETA: 0s
 5216/10000 [==============>...............] - ETA: 0s
 6464/10000 [==================>...........] - ETA: 0s
 7744/10000 [======================>.......] - ETA: 0s
 9056/10000 [==========================>...] - ETA: 0s
 9984/10000 [============================>.] - ETA: 0s
10000/10000 [==============================] - 0s 47us/step
test loss: 0.17407772153392434
test accuracy: 0.9513000249862671

补充知识:Keras 搭建简单神经网络:顺序模型+回归问题

多层全连接神经网络

每层神经元个数、神经网络层数、激活函数等可自由修改

使用不同的损失函数可适用于其他任务,比如:分类问题

这是Keras搭建神经网络模型最基础的方法之一,Keras还有其他进阶的方法,官网给出了一些基本使用方法:Keras官网

# 这里搭建了一个4层全连接神经网络(不算输入层),传入函数以及函数内部的参数均可自由修改
def ann(X, y):
  '''
  X: 输入的训练集数据
  y: 训练集对应的标签
  '''
  
  '''初始化模型'''
  # 首先定义了一个顺序模型作为框架,然后往这个框架里面添加网络层
  # 这是最基础搭建神经网络的方法之一
  model = Sequential()
  
  '''开始添加网络层'''
  # Dense表示全连接层,第一层需要我们提供输入的维度 input_shape
  # Activation表示每层的激活函数,可以传入预定义的激活函数,也可以传入符合接口规则的其他高级激活函数
  model.add(Dense(64, input_shape=(X.shape[1],)))
  model.add(Activation('sigmoid'))
  
  model.add(Dense(256))
  model.add(Activation('relu'))
  
  model.add(Dense(256))
  model.add(Activation('tanh'))
  
  model.add(Dense(32))
  model.add(Activation('tanh'))
  
  # 输出层,输出的维度大小由具体任务而定
  # 这里是一维输出的回归问题
  model.add(Dense(1))
  model.add(Activation('linear'))
  
  '''模型编译'''
  # optimizer表示优化器(可自由选择),loss表示使用哪一种
  model.compile(optimizer='rmsprop', loss='mean_squared_error')
  # 自定义学习率,也可以使用原始的基础学习率
  reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=10, 
                 verbose=0, mode='auto', min_delta=0.001, 
                 cooldown=0, min_lr=0)
  
  '''模型训练'''
  # 这里的模型也可以先从函数返回后,再进行训练
  # epochs表示训练的轮数,batch_size表示每次训练的样本数量(小批量学习),validation_split表示用作验证集的训练数据的比例
  # callbacks表示回调函数的集合,用于模型训练时查看模型的内在状态和统计数据,相应的回调函数方法会在各自的阶段被调用
  # verbose表示输出的详细程度,值越大输出越详细
  model.fit(X, y, epochs=100,
       batch_size=50, validation_split=0.0,
       callbacks=[reduce_lr],
       verbose=0)
  
  # 打印模型结构
  print(model.summary())

  return model

下图是此模型的结构图,其中下划线后面的数字是根据调用次数而定

Python实现Keras搭建神经网络训练分类模型教程

以上这篇Python实现Keras搭建神经网络训练分类模型教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
跟老齐学Python之编写类之四再论继承
Oct 11 Python
Python Django使用forms来实现评论功能
Aug 17 Python
深入理解Python中range和xrange的区别
Nov 26 Python
python:接口间数据传递与调用方法
Dec 17 Python
Django REST framework 视图和路由详解
Jul 19 Python
python面向对象 反射原理解析
Aug 12 Python
Python之time模块的时间戳,时间字符串格式化与转换方法(13位时间戳)
Aug 12 Python
Python threading.local代码实例及原理解析
Mar 16 Python
python实现猜数游戏(保存游戏记录)
Jun 22 Python
python爬虫scrapy图书分类实例讲解
Nov 23 Python
Python实现信息轰炸工具(再也不怕说不过别人了)
Jun 11 Python
Python爬虫基础之简单说一下scrapy的框架结构
Jun 26 Python
简单了解Python变量作用域正确使用方法
Jun 12 #Python
keras 读取多标签图像数据方式
Jun 12 #Python
Python数据可视化图实现过程详解
Jun 12 #Python
浅谈cv2.imread()和keras.preprocessing中的image.load_img()区别
Jun 12 #Python
升级keras解决load_weights()中的未定义skip_mismatch关键字问题
Jun 12 #Python
解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题
Jun 12 #Python
python + selenium 刷B站播放量的实例代码
Jun 12 #Python
You might like
PHP中计算字符串相似度的函数代码
2012/12/29 PHP
win7计划任务定时执行PHP脚本设置图解
2014/05/09 PHP
Laravel中Facade的加载过程与原理详解
2017/09/22 PHP
PHP设计模式(五)适配器模式Adapter实例详解【结构型】
2020/05/02 PHP
Js callBack 返回前一页的js方法
2008/11/30 Javascript
jquery实现的图片点击滚动效果
2014/04/29 Javascript
JS面向对象基础讲解(工厂模式、构造函数模式、原型模式、混合模式、动态原型模式)
2014/08/16 Javascript
jquery实现类似淘宝星星评分功能有截图
2014/09/15 Javascript
jQuery下拉友情链接美化效果代码分享
2015/08/26 Javascript
javascript实现不同颜色Tab标签切换效果
2016/04/27 Javascript
JavaScript数据结构链表知识详解
2016/11/21 Javascript
简单实现JavaScript图片切换效果
2016/11/28 Javascript
详解js静态检查工具eslint配置文件
2018/11/23 Javascript
Element-UI中Upload上传文件前端缓存处理示例
2019/02/21 Javascript
vue表单验证你真的会了吗?vue表单验证(form)validate
2019/04/07 Javascript
[00:15]天涯墨客终极技能展示
2018/08/25 DOTA
基于hashlib模块--加密(详解)
2017/06/21 Python
python实现多进程代码示例
2018/10/31 Python
基于Python实现迪杰斯特拉和弗洛伊德算法
2020/05/27 Python
Python3操作Excel文件(读写)的简单实例
2019/09/02 Python
解决TensorFlow GPU版出现OOM错误的问题
2020/02/03 Python
Pycharm IDE的安装和使用教程详解
2020/04/30 Python
Python爬虫JSON及JSONPath运行原理详解
2020/06/04 Python
pytorch加载自己的图像数据集实例
2020/07/07 Python
HTML5制作酷炫音频播放器插件图文教程
2014/12/30 HTML / CSS
HTML5实现直播间评论滚动效果的代码
2020/05/27 HTML / CSS
Auchan Direct波兰:欧尚在线杂货店
2016/10/19 全球购物
Saucony澳大利亚官网:美国跑鞋品牌,运动鞋中的劳斯莱斯
2018/05/05 全球购物
为什么如下的代码int a=100,b=100;long int c=a * b;不能工作
2013/11/29 面试题
《狐假虎威》教学反思
2014/02/07 职场文书
求职面试个人自我评价
2014/02/28 职场文书
营销与策划专业求职信
2014/06/20 职场文书
个人剖析材料范文
2014/09/30 职场文书
导游词之神仙居景区
2019/11/15 职场文书
Html5新增了哪些功能
2021/04/16 HTML / CSS
python中的random模块和相关函数详解
2022/04/22 Python