废话少说直接上代码样例如下
import tensorflow as tf import os from tensorflow.python.tools import freeze_graph # 本来这个model本无需解释太多,但是这么多人不能耐下心来看,那么我简单的说一下吧 # network是你们自己定义的模型结构而已 # ps: # def network(input): # return tf.layers.max_pooling2d(input, 2, 2) from model import network os.environ['CUDA_VISIBLE_DEVICES']='2' #设置GPU model_path = "path to /model.ckpt-0000" #设置model的路径,因新版tensorflow会生成三个文件,只需写到数字前 def main(): tf.reset_default_graph() input_node = tf.placeholder(tf.float32, shape=(228, 304, 3)) #这个是你送入网络的图片大小,如果你是其他的大小自行修改 input_node = tf.expand_dims(input_node, 0) flow = network(input_node) flow = tf.cast(flow, tf.uint8, 'out') #设置输出类型以及输出的接口名字,为了之后的调用pb的时候使用 saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, model_path) #保存图 tf.train.write_graph(sess.graph_def, 'output_model/pb_model', 'model.pb') #把图和参数结构一起 freeze_graph.freeze_graph('output_model/pb_model/model.pb', '', False, model_path, 'out','save/restore_all', 'save/Const:0', 'output_model/pb_model/frozen_model.pb', False, "") print("done") if __name__ == '__main__': main()
这节是关于tensorflow的Freezing,字面意思是冷冻,可理解为整合合并;整合什么呢,就是将模型文件和权重文件整合合并为一个文件,主要用途是便于发布。
官方解释可参考:https://www.tensorflow.org/extend/tool_developers/#freezing
这里我按我的理解翻译下,不对的地方请指正:
有一点令我们为比较困惑的是,tensorflow在训练过程中,通常不会将权重数据保存的格式文件里(这里我理解是模型文件),反而是分开保存在一个叫checkpoint的检查点文件里,当初始化时,再通过模型文件里的变量Op节点来从checkoupoint文件读取数据并初始化变量。这种模型和权重数据分开保存的情况,使得发布产品时不是那么方便,所以便有了freeze_graph.py脚本文件用来将这两文件整合合并成一个文件。
freeze_graph.py是怎么做的呢?首行它先加载模型文件,再从checkpoint文件读取权重数据初始化到模型里的权重变量,再将权重变量转换成权重 常量 (因为 常量 能随模型一起保存在同一个文件里),然后再通过指定的输出节点将没用于输出推理的Op节点从图中剥离掉,再重新保存到指定的文件里(用write_graphdef或Saver)
文件目录:tensorflow/python/tools/free_graph.py
测试文件:tensorflow/python/tools/free_graph_test.py 这个测试文件很有学习价值
参数:
总共有11个参数,一个个介绍下(必选: 表示必须有值;可选: 表示可以为空):
1、input_graph:(必选)模型文件,可以是二进制的pb文件,或文本的meta文件,用input_binary来指定区分(见下面说明)
2、input_saver:(可选)Saver解析器。保存模型和权限时,Saver也可以自身序列化保存,以便在加载时应用合适的版本。主要用于版本不兼容时使用。可以为空,为空时用当前版本的Saver。
3、input_binary:(可选)配合input_graph用,为true时,input_graph为二进制,为false时,input_graph为文件。默认False
4、input_checkpoint:(必选)检查点数据文件。训练时,给Saver用于保存权重、偏置等变量值。这时用于模型恢复变量值。
5、output_node_names:(必选)输出节点的名字,有多个时用逗号分开。用于指定输出节点,将没有在输出线上的其它节点剔除。
6、restore_op_name:(可选)从模型恢复节点的名字。升级版中已弃用。默认:save/restore_all
7、filename_tensor_name:(可选)已弃用。默认:save/Const:0
8、output_graph:(必选)用来保存整合后的模型输出文件。
9、clear_devices:(可选),默认True。指定是否清除训练时节点指定的运算设备(如cpu、gpu、tpu。cpu是默认)
10、initializer_nodes:(可选)默认空。权限加载后,可通过此参数来指定需要初始化的节点,用逗号分隔多个节点名字。
11、variable_names_blacklist:(可先)默认空。变量黑名单,用于指定不用恢复值的变量,用逗号分隔多个变量名字。
用法:
例:python tensorflow/python/tools/free_graph.py \
?input_graph=some_graph_def.pb \ 注意:这里的pb文件是用tf.train.write_graph方法保存的
?input_checkpoint=model.ckpt.1001 \ 注意:这里若是r12以上的版本,只需给.data-00000….前面的文件名,如:model.ckpt.1001.data-00000-of-00001,只需写model.ckpt.1001
?output_graph=/tmp/frozen_graph.pb
?output_node_names=softmax
另外,如果模型文件是.meta格式的,也就是说用saver.Save方法和checkpoint一起生成的元模型文件,free_graph.py不适用,但可以改造下:
1、copy free_graph.py为free_graph_meta.py
2、修改free_graph.py,导入meta_graph:from tensorflow.python.framework import meta_graph
3、将91行到97行换成:input_graph_def = meta_graph.read_meta_graph_file(input_graph).graph_def
这样改即可加载meta文件
到此这篇关于tensorflow使用freeze_graph.py将ckpt转为pb文件的方法的文章就介绍到这了,更多相关tensorflow ckpt转为pb文件内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!
tensorflow使用freeze_graph.py将ckpt转为pb文件的方法
- Author -
yjl9122声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@