Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解


Posted in Python onFebruary 10, 2020

python可以在处理各种数据时,如果可以将这些数据,利用图表将其可视化,这样在分析处理起来,将更加直观、清晰,以下是 利用 PyEcharts 常用图表的可视化Demo, 开发环境 python3

柱状图

基本柱状图

from pyecharts import Bar
# 基本柱状图
bar = Bar("基本柱状图", "副标题")
bar.use_theme('dark') # 暗黑色主题
bar.add('真实成本',  # label
    ["1月", "2月", "3月", "4月", "5月", "6月"],  # 横坐标
    [5, 20, 36, 10, 75, 90],    # 纵坐标
    is_more_utils=True)  # 设置最右侧工具栏
# bar.show_config()    # 调试输出pyecharts的js的配置信息
bar.render('bar_demo.html') # 生成html文件

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

堆叠柱状图

# 堆叠柱状图
x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]
bar1 = Bar('柱状信息堆叠图')
bar1.add('商家1', x_attr, data1, is_stack=True)  # is_stack=True 表示堆叠在一起
bar1.add('商家2', x_attr, data2, is_stack=True)
bar1.render('bar1_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

并列柱形图

# 并列柱形图
bar2 = Bar('并列柱形图', '标记线和标记示例')
bar2.add('商家1', x_attr, data1, mark_point=['average']) # 标记点:商家1的平均值
bar2.add('商家2', x_attr, data2, mark_line=['min', 'max']) # 标记线:商家2的最小/大值
bar2.render('bar2_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

横向并列柱形图

# 横向并列柱形图

# 横向并列柱形图
bar3 = Bar('横向并列柱形图', 'X轴与Y轴交换')
bar3.add('商家1', x_attr, data1)
bar3.add('商家2', x_attr, data2, is_convert=True) # is_convert=True :X轴与Y轴交换
bar3.render('bar3_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

以上相关柱状图完整代码bar_demo.py

from pyecharts import Bar
# 基本柱状图
bar = Bar("基本柱状图", "副标题")
bar.use_theme('dark') # 暗黑色主题
bar.add('真实成本',  # label
    ["1月", "2月", "3月", "4月", "5月", "6月"],  # 横坐标
    [5, 20, 36, 10, 75, 90],    # 纵坐标
    is_more_utils=True)  # 设置最右侧工具栏

# bar.show_config()    # 调试输出pyecharts的js的配置信息
bar.render('bar_demo.html') # 生成html文件


# 堆叠柱状图
x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]
bar1 = Bar('柱状信息堆叠图')
bar1.add('商家1', x_attr, data1, is_stack=True)  # is_stack=True 表示堆叠在一起
bar1.add('商家2', x_attr, data2, is_stack=True)
bar1.render('bar1_demo.html')


# 并列柱形图
bar2 = Bar('并列柱形图', '标记线和标记示例')
bar2.add('商家1', x_attr, data1, mark_point=['average']) # 标记点:商家1的平均值
bar2.add('商家2', x_attr, data2, mark_line=['min', 'max']) # 标记线:商家2的最小/大值
bar2.render('bar2_demo.html')

# 横向并列柱形图
bar3 = Bar('横向并列柱形图', 'X轴与Y轴交换')
bar3.add('商家1', x_attr, data1)
bar3.add('商家2', x_attr, data2, is_convert=True) # is_convert=True :X轴与Y轴交换
bar3.render('bar3_demo.html')

折线图、饼图、词云图

导入模块 与 基础数据

from pyecharts import Line
from pyecharts import Pie
from pyecharts import WordCloud
from pyecharts import EffectScatter, Overlap

x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]

基础折线示例图

# 折线示例图
line = Line("折线示例图")
line.add('商家1', x_attr, data1, mark_point=['average'])
line.add('商家2', x_attr, data2, is_smooth=True, mark_line=['max', 'average'])
line.render('line.demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

折线面积图

# 折线面积图
line = Line('折线面积示例图')
line.add('商家1', x_attr, data1, is_fill=True,line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add('商家2', x_attr, data2, line_color='#000', area_opacity=0.3, is_smooth=True)
line.render('line2_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

饼图

# 饼图
pie = Pie('饼图')
pie.add('', x_attr, data1, is_label_show=True)
pie.render('pie_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

词云图

# 词云图
name = [
    'Though', 'the answer', 'this question',
    'may at first', 'seem to border', 'on the',
    'absurd', 'reflection', 'will show', 'that there',
    'is a', 'good deal', 'more in', 'it than meets', 'the eye'
    ]
value = [10000, 6189, 4556, 2356, 2233,
     1895, 1456, 1255, 981, 875,
     542, 462, 361, 265, 125]

worldcloud = WordCloud(width=1300, height=620)
worldcloud.add('词云', name, value, word_size_range=[20, 100])
worldcloud.render('worldcloud.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

线性闪烁图 —组合图

# 线性闪烁图
line2 = Line('线性闪烁图')
line2.add('line', x_attr, data1, is_random=True)

es = EffectScatter()
es.add('es', x_attr, data1, effect_scale=8) # 闪烁
overlop = Overlap()
overlop.add(line2)   # 必须先添加line 再添加 es
overlop.add(es)
overlop.render('line-es.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

以上相关图完整代码line_pie_demo.py

from pyecharts import Line
from pyecharts import Pie
from pyecharts import WordCloud
from pyecharts import EffectScatter, Overlap

x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]

# 折线示例图
line = Line("折线示例图")
line.add('商家1', x_attr, data1, mark_point=['average'])
line.add('商家2', x_attr, data2, is_smooth=True, mark_line=['max', 'average'])
line.render('line.demo.html')

# 折线面积图
line = Line('折线面积示例图')
line.add('商家1', x_attr, data1, is_fill=True,line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add('商家2', x_attr, data2, line_color='#000', area_opacity=0.3, is_smooth=True)
line.render('line2_demo.html')

# 饼图
pie = Pie('饼图')
pie.add('', x_attr, data1, is_label_show=True)
pie.render('pie_demo.html')

# 词云图
name = [
    'Python', 'the answer', 'this question',
    'may at first', 'seem to border', 'on the',
    'absurd', 'reflection', 'will show', 'that there',
    'is a', 'good deal', 'more in', 'it than meets', 'the eye'
    ]
value = [10000, 6189, 4556, 2356, 2233,
     1895, 1456, 1255, 981, 875,
     542, 462, 361, 265, 125]

worldcloud = WordCloud(width=1300, height=620)
worldcloud.add('词云', name, value, word_size_range=[20, 100])
worldcloud.render('worldcloud.html')

# 线性闪烁图
line2 = Line('线性闪烁图')
line2.add('line', x_attr, data1, is_random=True)

es = EffectScatter()
es.add('es', x_attr, data1, effect_scale=8) # 闪烁
overlop = Overlap()
overlop.add(line2)   # 必须先添加line 再添加 es
overlop.add(es)
overlop.render('line-es.html')

更多关于Python数据可视化处理库PyEcharts使用方法与实例请查看下面的相关链接

Python 相关文章推荐
Python 深入理解yield
Sep 06 Python
Python 快速实现CLI 应用程序的脚手架
Dec 05 Python
Python使用三种方法实现PCA算法
Dec 12 Python
python如何将图片转换为字符图片
Aug 19 Python
Python实现二叉树前序、中序、后序及层次遍历示例代码
May 18 Python
用Python爬取QQ音乐评论并制成词云图的实例
Aug 24 Python
Python3 pandas 操作列表实例详解
Sep 23 Python
Python3+Requests+Excel完整接口自动化测试框架的实现
Oct 11 Python
Python使用Matlab命令过程解析
Jun 04 Python
pycharm不以pytest方式运行,想要切换回普通模式运行的操作
Sep 01 Python
pytho matplotlib工具栏源码探析一之禁用工具栏、默认工具栏和工具栏管理器三种模式的差异
Feb 25 Python
基于PyQT5制作一个桌面摸鱼工具
Feb 15 Python
Python的pygame安装教程详解
Feb 10 #Python
windows下python安装pip方法详解
Feb 10 #Python
python3.6连接mysql数据库及增删改查操作详解
Feb 10 #Python
Django中modelform组件实例用法总结
Feb 10 #Python
python爬虫库scrapy简单使用实例详解
Feb 10 #Python
tensorflow 实现从checkpoint中获取graph信息
Feb 10 #Python
Python3 集合set入门基础
Feb 10 #Python
You might like
Smarty安装配置方法
2008/04/10 PHP
Yii2中SqlDataProvider用法示例
2016/09/22 PHP
php基于闭包实现函数的自调用(递归)实例分析
2016/11/11 PHP
php微信开发之百度天气预报
2016/11/18 PHP
对于Laravel 5.5核心架构的深入理解
2018/02/22 PHP
Laravel统计一段时间间隔的数据方法
2019/10/09 PHP
extjs 的权限问题 要求控制的对象是 菜单,按钮,URL
2010/03/09 Javascript
js实现汉字排序的方法
2015/07/23 Javascript
基于Flowplayer打造一款免费的WEB视频播放器附源码
2015/09/06 Javascript
Bootstrap每天必学之基础排版
2015/11/20 Javascript
jquery中关于bind()方法的使用技巧分享
2017/03/30 jQuery
React Native使用Modal自定义分享界面的示例代码
2017/10/31 Javascript
vue项目实现表单登录页保存账号和密码到cookie功能
2018/08/31 Javascript
详解node字体压缩插件font-spider的用法
2018/09/28 Javascript
js实现超级玛丽小游戏
2020/03/18 Javascript
python发送邮件的实例代码(支持html、图片、附件)
2013/03/04 Python
构建Python包的五个简单准则简介
2015/06/15 Python
详解Python中的Descriptor描述符类
2016/06/14 Python
MySQL适配器PyMySQL详解
2017/09/20 Python
Win7下Python与Tensorflow-CPU版开发环境的安装与配置过程
2018/01/04 Python
tensorflow 使用flags定义命令行参数的方法
2018/04/23 Python
给Python学习者的文件读写指南(含基础与进阶)
2020/01/29 Python
python nohup 实现远程运行不宕机操作
2020/04/16 Python
Python figure参数及subplot子图绘制代码
2020/04/18 Python
享誉全球的多元化时尚精品购物平台:Farfetch发发奇(支持中文)
2017/08/08 全球购物
有原因的手表:Flex Watches
2019/03/23 全球购物
英国最大的户外商店:Go Outdoors
2019/04/17 全球购物
sort命令的作用和用法
2013/08/25 面试题
主题婚礼策划方案
2014/02/10 职场文书
公司中秋节活动方案
2014/02/12 职场文书
市场开发与营销专业求职信范文
2014/05/01 职场文书
商品陈列协议书
2014/09/29 职场文书
庆七一宣传标语
2014/10/08 职场文书
2015年学雷锋活动总结
2015/02/06 职场文书
mysql 带多个条件的查询方式
2021/06/05 MySQL
html form表单基础入门案例讲解
2021/07/15 HTML / CSS