Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解


Posted in Python onFebruary 10, 2020

python可以在处理各种数据时,如果可以将这些数据,利用图表将其可视化,这样在分析处理起来,将更加直观、清晰,以下是 利用 PyEcharts 常用图表的可视化Demo, 开发环境 python3

柱状图

基本柱状图

from pyecharts import Bar
# 基本柱状图
bar = Bar("基本柱状图", "副标题")
bar.use_theme('dark') # 暗黑色主题
bar.add('真实成本',  # label
    ["1月", "2月", "3月", "4月", "5月", "6月"],  # 横坐标
    [5, 20, 36, 10, 75, 90],    # 纵坐标
    is_more_utils=True)  # 设置最右侧工具栏
# bar.show_config()    # 调试输出pyecharts的js的配置信息
bar.render('bar_demo.html') # 生成html文件

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

堆叠柱状图

# 堆叠柱状图
x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]
bar1 = Bar('柱状信息堆叠图')
bar1.add('商家1', x_attr, data1, is_stack=True)  # is_stack=True 表示堆叠在一起
bar1.add('商家2', x_attr, data2, is_stack=True)
bar1.render('bar1_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

并列柱形图

# 并列柱形图
bar2 = Bar('并列柱形图', '标记线和标记示例')
bar2.add('商家1', x_attr, data1, mark_point=['average']) # 标记点:商家1的平均值
bar2.add('商家2', x_attr, data2, mark_line=['min', 'max']) # 标记线:商家2的最小/大值
bar2.render('bar2_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

横向并列柱形图

# 横向并列柱形图

# 横向并列柱形图
bar3 = Bar('横向并列柱形图', 'X轴与Y轴交换')
bar3.add('商家1', x_attr, data1)
bar3.add('商家2', x_attr, data2, is_convert=True) # is_convert=True :X轴与Y轴交换
bar3.render('bar3_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

以上相关柱状图完整代码bar_demo.py

from pyecharts import Bar
# 基本柱状图
bar = Bar("基本柱状图", "副标题")
bar.use_theme('dark') # 暗黑色主题
bar.add('真实成本',  # label
    ["1月", "2月", "3月", "4月", "5月", "6月"],  # 横坐标
    [5, 20, 36, 10, 75, 90],    # 纵坐标
    is_more_utils=True)  # 设置最右侧工具栏

# bar.show_config()    # 调试输出pyecharts的js的配置信息
bar.render('bar_demo.html') # 生成html文件


# 堆叠柱状图
x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]
bar1 = Bar('柱状信息堆叠图')
bar1.add('商家1', x_attr, data1, is_stack=True)  # is_stack=True 表示堆叠在一起
bar1.add('商家2', x_attr, data2, is_stack=True)
bar1.render('bar1_demo.html')


# 并列柱形图
bar2 = Bar('并列柱形图', '标记线和标记示例')
bar2.add('商家1', x_attr, data1, mark_point=['average']) # 标记点:商家1的平均值
bar2.add('商家2', x_attr, data2, mark_line=['min', 'max']) # 标记线:商家2的最小/大值
bar2.render('bar2_demo.html')

# 横向并列柱形图
bar3 = Bar('横向并列柱形图', 'X轴与Y轴交换')
bar3.add('商家1', x_attr, data1)
bar3.add('商家2', x_attr, data2, is_convert=True) # is_convert=True :X轴与Y轴交换
bar3.render('bar3_demo.html')

折线图、饼图、词云图

导入模块 与 基础数据

from pyecharts import Line
from pyecharts import Pie
from pyecharts import WordCloud
from pyecharts import EffectScatter, Overlap

x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]

基础折线示例图

# 折线示例图
line = Line("折线示例图")
line.add('商家1', x_attr, data1, mark_point=['average'])
line.add('商家2', x_attr, data2, is_smooth=True, mark_line=['max', 'average'])
line.render('line.demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

折线面积图

# 折线面积图
line = Line('折线面积示例图')
line.add('商家1', x_attr, data1, is_fill=True,line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add('商家2', x_attr, data2, line_color='#000', area_opacity=0.3, is_smooth=True)
line.render('line2_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

饼图

# 饼图
pie = Pie('饼图')
pie.add('', x_attr, data1, is_label_show=True)
pie.render('pie_demo.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

词云图

# 词云图
name = [
    'Though', 'the answer', 'this question',
    'may at first', 'seem to border', 'on the',
    'absurd', 'reflection', 'will show', 'that there',
    'is a', 'good deal', 'more in', 'it than meets', 'the eye'
    ]
value = [10000, 6189, 4556, 2356, 2233,
     1895, 1456, 1255, 981, 875,
     542, 462, 361, 265, 125]

worldcloud = WordCloud(width=1300, height=620)
worldcloud.add('词云', name, value, word_size_range=[20, 100])
worldcloud.render('worldcloud.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

线性闪烁图 —组合图

# 线性闪烁图
line2 = Line('线性闪烁图')
line2.add('line', x_attr, data1, is_random=True)

es = EffectScatter()
es.add('es', x_attr, data1, effect_scale=8) # 闪烁
overlop = Overlap()
overlop.add(line2)   # 必须先添加line 再添加 es
overlop.add(es)
overlop.render('line-es.html')

Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

以上相关图完整代码line_pie_demo.py

from pyecharts import Line
from pyecharts import Pie
from pyecharts import WordCloud
from pyecharts import EffectScatter, Overlap

x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]

# 折线示例图
line = Line("折线示例图")
line.add('商家1', x_attr, data1, mark_point=['average'])
line.add('商家2', x_attr, data2, is_smooth=True, mark_line=['max', 'average'])
line.render('line.demo.html')

# 折线面积图
line = Line('折线面积示例图')
line.add('商家1', x_attr, data1, is_fill=True,line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add('商家2', x_attr, data2, line_color='#000', area_opacity=0.3, is_smooth=True)
line.render('line2_demo.html')

# 饼图
pie = Pie('饼图')
pie.add('', x_attr, data1, is_label_show=True)
pie.render('pie_demo.html')

# 词云图
name = [
    'Python', 'the answer', 'this question',
    'may at first', 'seem to border', 'on the',
    'absurd', 'reflection', 'will show', 'that there',
    'is a', 'good deal', 'more in', 'it than meets', 'the eye'
    ]
value = [10000, 6189, 4556, 2356, 2233,
     1895, 1456, 1255, 981, 875,
     542, 462, 361, 265, 125]

worldcloud = WordCloud(width=1300, height=620)
worldcloud.add('词云', name, value, word_size_range=[20, 100])
worldcloud.render('worldcloud.html')

# 线性闪烁图
line2 = Line('线性闪烁图')
line2.add('line', x_attr, data1, is_random=True)

es = EffectScatter()
es.add('es', x_attr, data1, effect_scale=8) # 闪烁
overlop = Overlap()
overlop.add(line2)   # 必须先添加line 再添加 es
overlop.add(es)
overlop.render('line-es.html')

更多关于Python数据可视化处理库PyEcharts使用方法与实例请查看下面的相关链接

Python 相关文章推荐
Python Web框架Flask下网站开发入门实例
Feb 08 Python
python3实现TCP协议的简单服务器和客户端案例(分享)
Jun 14 Python
python模仿网页版微信发送消息功能
Feb 24 Python
Python3之简单搭建自带服务器的实例讲解
Jun 04 Python
Python pygorithm模块用法示例【常见算法测试】
Aug 16 Python
如何使用Python进行OCR识别图片中的文字
Apr 01 Python
pandas DataFrame索引行列的实现
Jun 04 Python
python list转置和前后反转的例子
Aug 26 Python
使用OpenCV circle函数图像上画圆的示例代码
Dec 27 Python
使用python的pyplot绘制函数实例
Feb 13 Python
python词云库wordcloud的使用方法与实例详解
Feb 17 Python
解决Jupyter notebook中.py与.ipynb文件的import问题
Apr 21 Python
Python的pygame安装教程详解
Feb 10 #Python
windows下python安装pip方法详解
Feb 10 #Python
python3.6连接mysql数据库及增删改查操作详解
Feb 10 #Python
Django中modelform组件实例用法总结
Feb 10 #Python
python爬虫库scrapy简单使用实例详解
Feb 10 #Python
tensorflow 实现从checkpoint中获取graph信息
Feb 10 #Python
Python3 集合set入门基础
Feb 10 #Python
You might like
php如何调用webservice应用介绍
2012/11/24 PHP
PHP 实现代码复用的一个方法 traits新特性
2015/02/22 PHP
php中PDO方式实现数据库的增删改查
2015/05/17 PHP
PHP页面跳转操作实例分析(header方法)
2016/09/28 PHP
YII框架学习笔记之命名空间、操作响应与视图操作示例
2019/04/30 PHP
TP5框架简单登录功能实现方法示例
2019/10/31 PHP
PHP ElasticSearch做搜索实例讲解
2020/02/05 PHP
THINKPHP5分页数据对象处理过程解析
2020/10/28 PHP
解析URI与URL之间的区别与联系
2013/11/22 Javascript
jQuery实现简单的间隔向上滚动效果
2015/03/09 Javascript
Ionic3 UI组件之autocomplete详解
2017/06/08 Javascript
小发现之浅谈location.search与location.hash的问题
2017/06/23 Javascript
Vue学习笔记进阶篇之多元素及多组件过渡
2017/07/19 Javascript
node.js 核心http模块,起一个服务器,返回一个页面的实例
2017/09/11 Javascript
微信小程序显示下拉列表功能【附源码下载】
2017/12/12 Javascript
浅谈在vue中使用mint-ui swipe遇到的问题
2018/09/27 Javascript
后台使用freeMarker和前端使用vue的方法及遇到的问题
2019/06/13 Javascript
python使用BeautifulSoup分析网页信息的方法
2015/04/04 Python
python实现从网络下载文件并获得文件大小及类型的方法
2015/04/28 Python
使用Flask-Cache缓存实现给Flask提速的方法详解
2019/06/11 Python
在Qt5和PyQt5中设置支持高分辨率屏幕自适应的方法
2019/06/18 Python
Python中正反斜杠(‘/’和‘\’)的意义与用法
2019/08/12 Python
Python实现多线程/多进程的TCP服务器
2019/09/03 Python
解决Python二维数组赋值问题
2019/11/28 Python
有关pycharm登录github时有的时候会报错connection reset的问题
2020/09/15 Python
Scrapy-Redis之RedisSpider与RedisCrawlSpider详解
2020/11/18 Python
意大利时尚精品店:Nugnes 1920
2020/02/10 全球购物
新闻网站实习自我鉴定
2013/09/25 职场文书
图书室管理制度
2014/01/19 职场文书
先进德育工作者事迹材料
2014/01/24 职场文书
幼儿园中班上学期评语
2014/04/18 职场文书
民用住房租房协议书
2014/10/29 职场文书
2014年班主任工作总结
2014/11/08 职场文书
2015年会计个人工作总结
2015/04/02 职场文书
应届毕业生的自我评价
2019/06/21 职场文书
微信小程序实现拍照和相册选取图片
2021/05/09 Javascript