利用Pandas和Numpy按时间戳将数据以Groupby方式分组


Posted in Python onJuly 22, 2019

首先说一下需求,我需要将数据以分钟为单位进行分组,然后每一分钟内的数据作为一行输出,因为不同时间的数据量不一样,所以所有数据按照最长的那组数据为准,不足的数据以各自的最后一个数据进行补足。

之后要介绍一下我的数据源,之前没用的数据列已经去除,我只留下要用到的数据data列和时间戳time列,时间戳是以秒计的,可以看到一共是407454行。

data     time
0    6522.50 1.530668e+09
1    6522.66 1.530668e+09
2    6523.79 1.530668e+09
3    6523.79 1.530668e+09
4    6524.82 1.530668e+09
5    6524.35 1.530668e+09
6    6523.66 1.530668e+09
7    6522.64 1.530668e+09
8    6523.25 1.530668e+09
9    6523.88 1.530668e+09
10   6525.30 1.530668e+09
11   6525.70 1.530668e+09
...     ...      ...
407443 6310.69 1.531302e+09
407444 6310.55 1.531302e+09
407445 6310.42 1.531302e+09
407446 6310.40 1.531302e+09
407447 6314.03 1.531302e+09
407448 6314.04 1.531302e+09
407449 6312.84 1.531302e+09
407450 6312.57 1.531302e+09
407451 6312.56 1.531302e+09
407452 6314.04 1.531302e+09
407453 6314.04 1.531302e+09
 
[407454 rows x 2 columns]

开始进行数据处理,定义一个函数,输入为一个DataFrame和时间列的命名。

def getdata_time(dataframe,name):
 dataframe[name] = dataframe[name]/60  #将时间转换为分钟
 dataframe[name] = dataframe[name].astype('int64')
 
 datalen = dataframe.groupby(name).count().max()   #获取数据最大长度
 
 timeframe = dataframe.groupby(name).count().reset_index()#为了获取时间将分组后时间转换为DataFrame
 timeseries = timeframe['time']    
 
 array = []   #建立一个空数组以便存值
 for time, group in dataframe.groupby(name): 
 
 tmparray = numpy.array(group['data']) #将series转换为数组并添加到总数组中
 array.append(tmparray)
 
 notimedata = pandas.DataFrame(array)
 notimedata = notimedata.fillna(method='ffill',axis = 1,limit=datalen[0]) #将缺失值补全
 notimedata[datalen[0]+1] = timeseries  #把时间添加到最后一列
 
 return notimedata

下面将逐行进行分析,首先要以每分钟为依据进行分组,那么将秒计的时间戳除以60变为分钟,转换为int型是为了观察方便(更改类型是否会导致数据精度缺失影响结果并不清楚,如果有了解的人看到欢迎指出,谢谢)。

datalen是我们要用到的每分钟中最大的数据长度,用来作为标齐依据。DataFrame.groupby.count()是分别显示每组数据的个数,并不是显示有多少个分组,如果想要获取分组后每一组的index就需要用到下一行的reset_index方法,之所以不直接用reset_index而是在count()方法后调用是因为groupby分组后的结果不是一个DataFrame,而经过count()(不仅仅是count,对分组数据操作的方法都可以,只要得出的结果是与每一组的index一一对应即可)操作后就可以得到一个以index为一列,另一列是count结果的DataFrame。以下为直接进行reset_index操作的报错:

AttributeError: Cannot access callable attribute 'reset_index' of 'DataFrameGroupBy' objects, try using the 'apply' method

以下为经过count操作后的reset_index方法显示结果,可以看到一共分为了10397组:

time data
0   25511135  33
1   25511136  18
2   25511137  25
3   25511138  42
4   25511139  36
5   25511140   7
6   25511141  61
7   25511142  45
8   25511143  46
9   25511144  19
10   25511145  21
...     ...  ...
10387 25521697   3
10388 25521698   9
10389 25521699  16
10390 25521700  13
10391 25521701   4
10392 25521702  34
10393 25521703  124
10394 25521704  302
10395 25521705  86
10396 25521706  52
 
[10397 rows x 2 columns]

提取的timeseries将在最后数据整合时使用。现在开始将每组数据提取,首先建立一个空的数组用来存放,然后利用for循环获取每一组的信息,time即为分组的index,group即为每一分组的内容,将数据从group['data']中取出并添加到之前建立的空数组里,循环操作过后转换为DataFrame,当然这个DataFrame中包含了大量缺失值,因为它的列数是以最长的数据为准。如下:

0    1    2    3   ...  1143 1144 1145 1146
0   6522.50 6522.66 6523.79 6523.79 ...  NaN  NaN  NaN  NaN
1   6523.95 6524.90 6525.00 6524.35 ...  NaN  NaN  NaN  NaN
2   6520.87 6520.00 6520.45 6520.46 ...  NaN  NaN  NaN  NaN
3   6516.34 6516.26 6516.21 6516.21 ...  NaN  NaN  NaN  NaN
4   6513.28 6514.00 6514.00 6514.00 ...  NaN  NaN  NaN  NaN
5   6511.98 6511.98 6511.99 6513.00 ...  NaN  NaN  NaN  NaN
6   6511.00 6511.00 6511.00 6511.00 ...  NaN  NaN  NaN  NaN
7   6511.70 6511.78 6511.99 6511.99 ...  NaN  NaN  NaN  NaN
8   6509.51 6510.00 6510.80 6510.80 ...  NaN  NaN  NaN  NaN
9   6511.36 6510.00 6510.00 6510.00 ...  NaN  NaN  NaN  NaN
10   6507.00 6507.00 6507.00 6507.00 ...  NaN  NaN  NaN  NaN
...    ...   ...   ...   ... ...  ...  ...  ...  ...
10386 6333.77 6331.31 6331.30 6333.19 ...  NaN  NaN  NaN  NaN
10387 6331.68 6331.30 6331.68   NaN ...  NaN  NaN  NaN  NaN
10388 6331.30 6331.30 6331.00 6331.00 ...  NaN  NaN  NaN  NaN
10389 6330.93 6330.92 6330.92 6330.93 ...  NaN  NaN  NaN  NaN
10390 6330.83 6330.83 6330.90 6330.80 ...  NaN  NaN  NaN  NaN
10391 6327.57 6326.00 6326.00 6325.74 ...  NaN  NaN  NaN  NaN
10392 6327.57 6329.70 6328.85 6328.85 ...  NaN  NaN  NaN  NaN
10393 6323.54 6323.15 6323.15 6322.77 ...  NaN  NaN  NaN  NaN
10394 6311.00 6310.83 6310.83 6310.50 ...  NaN  NaN  NaN  NaN
10395 6311.45 6311.32 6310.01 6310.01 ...  NaN  NaN  NaN  NaN
10396 6310.46 6310.46 6310.56 6311.61 ...  NaN  NaN  NaN  NaN
 
[10397 rows x 1147 columns]

可以看到行数是分组个数,一共1147列也是最多的那组数据长度。

之后我们通过调用fillna方法将缺失值进行填充,method='ffill'是指以缺失值前一个数据为依据,axis = 1是以行为单位,limit是指最大填充长度。最终,把我们之前取得的timeseries添加到最后一列,就得到了需求的最终结果。

0    1    2    ...    1145   1146   1148
0   6522.50 6522.66 6523.79  ...   6522.14 6522.14 25511135
1   6523.95 6524.90 6525.00  ...   6520.00 6520.00 25511136
2   6520.87 6520.00 6520.45  ...   6517.00 6517.00 25511137
3   6516.34 6516.26 6516.21  ...   6514.00 6514.00 25511138
4   6513.28 6514.00 6514.00  ...   6511.97 6511.97 25511139
5   6511.98 6511.98 6511.99  ...   6511.00 6511.00 25511140
6   6511.00 6511.00 6511.00  ...   6510.90 6510.90 25511141
7   6511.70 6511.78 6511.99  ...   6512.09 6512.09 25511142
8   6509.51 6510.00 6510.80  ...   6512.09 6512.09 25511143
9   6511.36 6510.00 6510.00  ...   6507.04 6507.04 25511144
10   6507.00 6507.00 6507.00  ...   6508.57 6508.57 25511145
11   6507.16 6507.74 6507.74  ...   6506.35 6506.35 25511146
...    ...   ...   ...  ...     ...   ...    ...
10388 6331.30 6331.30 6331.00  ...   6331.00 6331.00 25521698
10389 6330.93 6330.92 6330.92  ...   6330.99 6330.99 25521699
10390 6330.83 6330.83 6330.90  ...   6327.58 6327.58 25521700
10391 6327.57 6326.00 6326.00  ...   6325.74 6325.74 25521701
10392 6327.57 6329.70 6328.85  ...   6325.00 6325.00 25521702
10393 6323.54 6323.15 6323.15  ...   6311.00 6311.00 25521703
10394 6311.00 6310.83 6310.83  ...   6315.00 6315.00 25521704
10395 6311.45 6311.32 6310.01  ...   6310.00 6310.00 25521705
10396 6310.46 6310.46 6310.56  ...   6314.04 6314.04 25521706
 
[10397 rows x 1148 columns]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python编程判断一个正整数是否为素数的方法
Apr 14 Python
Python实现采用进度条实时显示处理进度的方法
Dec 19 Python
win10系统下Anaconda3安装配置方法图文教程
Sep 19 Python
在Python中pandas.DataFrame重置索引名称的实例
Nov 06 Python
pyqt5实现登录界面的模板
May 30 Python
python3使用腾讯企业邮箱发送邮件的实例
Jun 28 Python
深入了解Python iter() 方法的用法
Jul 11 Python
余弦相似性计算及python代码实现过程解析
Sep 18 Python
如何使用Python脚本实现文件拷贝
Nov 20 Python
Python创建临时文件和文件夹
Aug 05 Python
详解Scrapy Redis入门实战
Nov 18 Python
用python修改excel表某一列内容的操作方法
Jun 11 Python
python+logging+yaml实现日志分割
Jul 22 #Python
python删除列表元素的三种方法(remove,pop,del)
Jul 22 #Python
python Gunicorn服务器使用方法详解
Jul 22 #Python
python实现按行分割文件
Jul 22 #Python
python UDP(udp)协议发送和接收的实例
Jul 22 #Python
linux环境下Django的安装配置详解
Jul 22 #Python
python判断一个对象是否可迭代的例子
Jul 22 #Python
You might like
ecshop 订单确认中显示省市地址信息的方法
2010/03/15 PHP
php htmlspecialchars()与shtmlspecialchars()函数的深入分析
2013/06/05 PHP
CodeIgniter生成静态页的方法
2016/05/17 PHP
apache php mysql开发环境安装教程
2016/07/28 PHP
基于PHP实现发微博动态代码实例
2020/12/11 PHP
js获取url参数的使用扩展实例
2007/12/29 Javascript
Js+Flash实现访问剪切板操作
2012/11/20 Javascript
js操作iframe兼容各种主流浏览器示例代码
2013/07/22 Javascript
JQuery Highcharts 动态生成图表的方法
2013/11/15 Javascript
禁止ajax缓存获取程序最新数据的方法
2013/11/19 Javascript
js自定义鼠标右键的实现原理及源码
2014/06/23 Javascript
Javascript+CSS实现影像卷帘效果思路及代码
2014/10/20 Javascript
AngularJS实现表单验证
2015/01/28 Javascript
jquery解析json格式数据的方法(对象、字符串)
2015/11/24 Javascript
JavaScript类型系统之基本数据类型与包装类型
2016/01/06 Javascript
JS正则匹配URL网址的方法(可匹配www,http开头的一切网址)
2017/01/06 Javascript
javascript中json对象json数组json字符串互转及取值方法
2017/04/19 Javascript
React Native使用fetch实现图片上传的示例代码
2018/03/07 Javascript
layui获取选中行数据的实例讲解
2018/08/19 Javascript
Vue CLI 2.x搭建vue(目录最全分析)
2019/02/27 Javascript
vue限制输入框只能输入8位整数和2位小数的代码
2019/11/06 Javascript
解决React在安装antd之后出现的Can't resolve './locale'问题(推荐)
2020/05/03 Javascript
微信小程序使用前置摄像头拍照
2020/10/22 Javascript
Python本地与全局命名空间用法实例
2015/06/16 Python
python中正则的使用指南
2016/12/04 Python
快速解决docker-py api版本不兼容的问题
2019/08/30 Python
Python HTTP下载文件并显示下载进度条功能的实现
2020/04/02 Python
PyQt5 QDockWidget控件应用详解
2020/08/12 Python
英国领先的豪华时尚家居网上商店:Amara
2019/08/12 全球购物
俄罗斯茶和咖啡网上商店:Tea.ru
2021/01/26 全球购物
校园文明标语
2014/06/13 职场文书
质量月活动总结
2014/08/26 职场文书
新兵入伍心得体会
2014/09/04 职场文书
2014企业领导班子四风对照检查材料思想汇报
2014/09/17 职场文书
红领巾广播站广播稿
2014/10/19 职场文书
ECharts transform数据转换和dataZoom在项目中使用
2022/12/24 Javascript