Python实现朴素贝叶斯分类器的方法详解


Posted in Python onJuly 04, 2018

本文实例讲述了Python实现朴素贝叶斯分类器的方法。分享给大家供大家参考,具体如下:

贝叶斯定理

贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。

先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。

贝叶斯公式:

P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B)

变形得:

P(A|B)=P(B|A)*P(A)/P(B)

其中

  • P(A)是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。
  • P(A|B)是已知B发生后A的条件概率,也称作A的后验概率。
  • P(B|A)是已知A发生后B的条件概率,也称作B的后验概率,这里称作似然度。
  • P(B)是B的先验概率或边缘概率,这里称作标准化常量。
  • P(B|A)/P(B)称作标准似然度。

朴素贝叶斯分类(Naive Bayes)

朴素贝叶斯分类器在估计类条件概率时假设属性之间条件独立。

首先定义

  • x = {a1,a2,...}为一个样本向量,a为一个特征属性
  • div = {d1 = [l1,u1],...} 特征属性的一个划分
  • class = {y1,y2,...}样本所属的类别

算法流程:

(1) 通过样本集中类别的分布,对每个类别计算先验概率p(y[i])

(2) 计算每个类别下每个特征属性划分的频率p(a[j] in d[k] | y[i])

(3) 计算每个样本的p(x|y[i])

p(x|y[i]) = p(a[1] in d | y[i]) * p(a[2] in d | y[i]) * ...

样本的所有特征属性已知,所以特征属性所属的区间d已知。

可以通过(2)确定p(a[k] in d | y[i])的值,从而求得p(x|y[i])

(4) 由贝叶斯定理得:

p(y[i]|x) = ( p(x|y[i]) * p(y[i]) ) / p(x)

因为分母相同,只需计算分子。

p(y[i]|x)是观测样本属于分类y[i]的概率,找出最大概率对应的分类作为分类结果。

示例:

导入数据集

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

计算类别的先验概率

P(C = 0) = 0.5
P(C = 1) = 0.5

计算每个特征属性条件概率:

P(a1 = 0 | C = 0) = 0.3
P(a1 = 1 | C = 0) = 0.7
P(a2 = 0 | C = 0) = 0.4
P(a2 = 1 | C = 0) = 0.6
P(a1 = 0 | C = 1) = 0.5
P(a1 = 1 | C = 1) = 0.5
P(a2 = 0 | C = 1) = 0.7
P(a2 = 1 | C = 1) = 0.3

测试样本:

x = { a1 = 1, a2 = 2}
p(x | C = 0) = p(a1 = 1 | C = 0) * p( 2 = 2 | C = 0) = 0.3 * 0.6 = 0.18
p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 2 | C = 1) = 0.5 * 0.3 = 0.15

计算P(C | x) * p(x):

P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09
P(C = 1) * p(x | C = 2) = 0.5 * 0.15 = 0.075

所以认为测试样本属于类型C1

Python实现

朴素贝叶斯分类器的训练过程为计算(1),(2)中的概率表,应用过程为计算(3),(4)并寻找最大值。

还是使用原来的接口进行类封装:

from numpy import *
class NaiveBayesClassifier(object):
  def __init__(self):
    self.dataMat = list()
    self.labelMat = list()
    self.pLabel1 = 0
    self.p0Vec = list()
    self.p1Vec = list()
  def loadDataSet(self,filename):
    fr = open(filename)
    for line in fr.readlines():
      lineArr = line.strip().split()
      dataLine = list()
      for i in lineArr:
        dataLine.append(float(i))
      label = dataLine.pop() # pop the last column referring to label
      self.dataMat.append(dataLine)
      self.labelMat.append(int(label))
  def train(self):
    dataNum = len(self.dataMat)
    featureNum = len(self.dataMat[0])
    self.pLabel1 = sum(self.labelMat)/float(dataNum)
    p0Num = zeros(featureNum)
    p1Num = zeros(featureNum)
    p0Denom = 1.0
    p1Denom = 1.0
    for i in range(dataNum):
      if self.labelMat[i] == 1:
        p1Num += self.dataMat[i]
        p1Denom += sum(self.dataMat[i])
      else:
        p0Num += self.dataMat[i]
        p0Denom += sum(self.dataMat[i])
    self.p0Vec = p0Num/p0Denom
    self.p1Vec = p1Num/p1Denom
  def classify(self, data):
    p1 = reduce(lambda x, y: x * y, data * self.p1Vec) * self.pLabel1
    p0 = reduce(lambda x, y: x * y, data * self.p0Vec) * (1.0 - self.pLabel1)
    if p1 > p0:
      return 1
    else:
      return 0
  def test(self):
    self.loadDataSet('testNB.txt')
    self.train()
    print(self.classify([1, 2]))
if __name__ == '__main__':
  NB = NaiveBayesClassifier()
  NB.test()

Matlab

Matlab的标准工具箱提供了对朴素贝叶斯分类器的支持:

trainData = [0 1; -1 0; 2 2; 3 3; -2 -1;-4.5 -4; 2 -1; -1 -3];
group = [1 1 -1 -1 1 1 -1 -1]';
model = fitcnb(trainData, group)
testData = [5 2;3 1;-4 -3];
predict(model, testData)

fitcnb用来训练模型,predict用来预测。

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
利用Python爬虫给孩子起个好名字
Feb 14 Python
Python之os操作方法(详解)
Jun 15 Python
python Flask实现restful api service
Dec 04 Python
Python语言实现将图片转化为html页面
Dec 06 Python
详解Python 函数如何重载?
Apr 23 Python
python实现远程控制电脑
May 23 Python
利用python实现周期财务统计可视化
Aug 25 Python
Pyecharts绘制全球流向图的示例代码
Jan 08 Python
Tensorflow--取tensorf指定列的操作方式
Jun 30 Python
python实现的人脸识别打卡系统
May 08 Python
在Django中使用MQTT的方法
May 10 Python
python内置模块之上下文管理contextlib
Jun 14 Python
如何优雅地改进Django中的模板碎片缓存详解
Jul 04 #Python
Django框架多表查询实例分析
Jul 04 #Python
python 借助numpy保存数据为csv格式的实现方法
Jul 04 #Python
Python将一个CSV文件里的数据追加到另一个CSV文件的方法
Jul 04 #Python
python中csv文件的若干读写方法小结
Jul 04 #Python
Python画柱状统计图操作示例【基于matplotlib库】
Jul 04 #Python
pandas将numpy数组写入到csv的实例
Jul 04 #Python
You might like
PHP之短标签开启设置
2013/06/17 PHP
PHP使用递归方式列出当前目录下所有文件的方法
2015/06/02 PHP
PHP设计模式之策略模式原理与用法实例分析
2019/04/04 PHP
Javascript 验证上传图片大小[客户端]
2009/08/01 Javascript
基于mootools插件实现遮罩层新手引导
2012/05/24 Javascript
JavaScript高级程序设计(第3版)学习笔记7 js函数(上)
2012/10/11 Javascript
javascript 全选与全取消功能的实现代码
2012/12/23 Javascript
jQuery制作的别致导航有阴影背景高亮模式窗口
2014/04/15 Javascript
原生js实现fadein 和 fadeout淡入淡出效果
2014/06/05 Javascript
使用jquery实现放大镜效果
2014/09/02 Javascript
javascript实现playfair和hill密码算法
2014/12/07 Javascript
浅谈Nodejs观察者模式
2015/10/13 NodeJs
javascript中的面向对象
2017/03/30 Javascript
Jquery+Ajax+xml实现中国地区选择三级联动菜单效果(推荐)
2017/06/09 jQuery
Three.js利用orbit controls插件(轨道控制)控制模型交互动作详解
2017/09/25 Javascript
浅谈mint-ui loadmore组件注意的问题
2017/11/08 Javascript
你应该了解的JavaScript Array.map()五种用途小结
2018/11/14 Javascript
详解vue的数据劫持以及操作数组的坑
2019/04/18 Javascript
微信小程序结合Storage实现搜索历史效果
2019/05/18 Javascript
JS使用for in有序获取对象数据
2020/05/19 Javascript
Python中的模块和包概念介绍
2015/04/13 Python
用Python删除本地目录下某一时间点之前创建的所有文件的实例
2017/12/14 Python
python处理数据,存进hive表的方法
2018/07/04 Python
Python登录系统界面实现详解
2019/06/25 Python
python如何获取列表中每个元素的下标位置
2019/07/01 Python
pyspark给dataframe增加新的一列的实现示例
2020/04/24 Python
Java文件和目录(IO)操作
2014/08/26 面试题
医学专业应届生的自我评价
2014/02/28 职场文书
医疗纠纷协议书
2014/04/16 职场文书
司法所长先进事迹
2014/06/02 职场文书
党员“四风”方面存在问题及整改措施
2014/09/24 职场文书
慰问信格式
2015/02/14 职场文书
2015秋季开学典礼主持词
2015/07/16 职场文书
Spring实现内置监听器
2021/07/09 Java/Android
python读取并查看npz/npy文件数据以及数据显示方法
2022/04/14 Python
Python 视频画质增强
2022/04/28 Python