python实现堆和索引堆的代码示例


Posted in Python onMarch 19, 2018

堆是一棵完全二叉树。堆分为大根堆和小根堆,大根堆是父节点大于左右子节点,并且左右子树也满足该性质的完全二叉树。小根堆相反。可以利用堆来实现优先队列。

由于是完全二叉树,所以可以使用数组来表示堆,索引从0开始[0:length-1]。结点i的左右子节点分别为2i+1,2i+2。长度为length的树的最后一个非叶子节点为length//2-1。当前节点i的父节点为(i-1)//2。其中//表示向下取整。

以大根堆举例。当每次插入或者删除的时候,为了保证堆的结构特征不被破坏,需要进行调整。调整分为两种,一种是从上往下,将小的数下沉。一种是从下往上,令大的数上浮。

具体实现如下:

首先编写几个魔术方法。包括构造函数,可以直接调用len来返回data数组长度的函数,一个打印data内容的函数

def __init__(self, data=[]):
    self.data = data
    self.construct_heap()

 def __len__(self):
    return len(self.data)

 def __str__(self):
    return str(self.data)

定义一个swap函数,来方便的交换数组中两个索引处的值。

def swap(self, i, j):
    self.data[i], self.data[j] = self.data[j], self.data[i]

定义float_up方法,使堆中大的数能浮上来。当前节点不为根节点,并且当前节点数据大小大于父节点时,上浮。

def float_up(self, i):
    while i > 0 and self.data[i] > self.data[(i - 1) // 2]:
      self.swap(i, (i - 1) // 2)
      i = (i - 1) // 2

定义sink_down方法,使堆中小的数沉下去。当前节点不为叶子节点时,如果小于左孩子或右孩子的数据,则和左右孩子中较大的换一下位置。

def sink_down(self, i):
    while i < len(self) // 2:
      l, r = 2 * i + 1, 2 * i + 2
      if r < len(self) and self.data[l] < self.data[r]:
        l = r
      if self.data[i] < self.data[l]:
        self.swap(i, l)

      i = l

实现append方法,能够动态地添加数据。在数据数组尾部添加数据,然后将数据上浮。

def append(self, data):
    self.data.append(data)
    self.float_up(len(self) - 1)

实现pop_left方法,取堆中最大元素,即优先队列中第一个元素。将数组中第一个元素与最后一个元素换位置,删除最后一个元素,然后将第一个元素下沉到合适的位置。

def pop_left(self):
    self.swap(0, len(self) - 1)
    r = self.data.pop()
    self.sink_down(0)
    return r

如果想在初始化堆的时候,向构造函数中传入数据参数,则需要一次性将整个堆构建完毕,而不能一个一个加入。实现也很简单,从最后一个非叶节点开始,逐个执行sink_down操作。

def construct_heap(self):
    for i in range(len(self) // 2 - 1, -1, -1):
      self.sink_down(i)

这样一个基本的堆的代码就编写完毕了。

但是如果我们想要动态的改变数据,当前的堆就不能满足我们的需求了,因为索引不能总是标识同一个数据,因为堆的结构是不断调整的。我们需要使用索引堆。

在索引堆中,我们不在堆中直接保存数据,而是用在堆中存放数据的索引。

如果我们输入的数据arr是 45 20 12 5 35。则arr[0]一直指向45,arr[1]一直指向20,因为我们在调整堆结构中实际调整的是索引数组,而不会改变真实存放数据的数组。

因此我们的代码需要调整,首先在构造函数中加入一个索引数组。下标从0开始,与存放数据的数组的下标相对应。

def __init__(self, data=[]):
    self.data = data
    self.index_arr = list(range(len(self.data)))
    self.construct_heap()

然后将返回堆长度的魔术函数也修改一下。

def __len__(self):
    return len(self.index_arr)

调整一下之前定义的swap方法,原来是直接交换数据,现在交换索引。

def swap(self, i, j):
    self.index_arr[i], self.index_arr[j] = self.index_arr[j], self.index_arr[i]

调整float_up以及sink_down中的相应位置

def float_up(self, i):
    while i > 0 and self.data[self.index_arr[i]] > self.data[self.index_arr[(i - 1) // 2]]:
      self.swap(i, (i - 1) // 2)
      i = (i - 1) // 2
      
  def sink_down(self, i):
    while i < len(self) // 2:
      l, r = 2 * i + 1, 2 * i + 2
      if r < len(self) and self.data[self.index_arr[l]] < self.data[self.index_arr[r]]:
        l = r
      if self.data[self.index_arr[i]] < self.data[self.index_arr[l]]:
        self.swap(i, l)

      i = l

当append数据的时候,要相应的更新index_arr

def append(self, data):
    self.data.append(data)
    self.index_arr.append(len(self))
    self.float_up(len(self) - 1)

当移出数据的时候,之前已经提到过存放数据的数组,是按照append的顺序进行存储的,平时操作只是对index_arr的顺序进行调整。

如果data_arr为 42 30 74 60 相应的index_arr应该为2 3 0 1

这时,当我们popleft出最大元素时,data_arr中的74被移出后变成了42 30 60,数组中最大索引由3变成了2,如果索引数组中仍然用3这个索引来索引30会造成index溢出。74的索引为2,需要我们将索引数在2之后的都减1。

综上,在删除元素时,我们原先是将data_arr中的首尾元素互换,再删除尾部元素,再对头部元素进行sink_down操作。现在我们先换索引数组中首尾元素,再删除索引数组尾部元素,此时尚未操作存放data的data_arr,因此索引数组剩余元素与data_arr的元素仍是一一对应的。进行sink_down操作,操作完成之后再删除data_arr相应位置元素。最后将index_arr中值大于原index_arr头部元素值的减一。

def pop_left(self):
    self.swap(0, len(self) - 1)
    r = self.index_arr.pop()
    self.sink_down(0)
    self.data.pop(r)

    for i, index in enumerate(self.index_arr):
      if index > r:
        self.index_arr[i] -= 1

    return r

索引堆增加了一个更新操作,可以随时更新索引堆中的数据。更新时,先直接更新data_arr中相应索引处的数据,然后在index_arr中,找到存放了data_arr中,刚被更新的数据的索引的索引位置,与删除时一样需要进行一次遍历。找到这个位置之后,由于无法确定与前后元素的大小关系,因此需要进行一次float_up操作再进行一次sink_down操作。

def update(self, i, data):
    self.data[i] = data
    for index_index, index in enumerate(self.index_arr):
      if index == i:
        target = index_index

    self.float_up(target)
    self.sink_down(target)

可以很明显看出,这个索引堆在插入元素时是比较快的,但是在删除元素和更新元素时,为了查找相应位置索引,都进行了一次遍历,这是很耗时的操作。为了能更快的找到index_arr中值为要更新的data_arr的相应索引值得索引位置,我们再次开辟一个新的数组to_index,来对index_arr进行索引。

例如对于数组75 54 65 90

此时它的index_arr为3 0 2 1。当要更新data[3],即90这个元素时,现在要遍历一遍index_arr来找到3这个位置,这个位置是0。我们要建立一个to_index,to_index[3]中存放的元素为0。

index_arr存放的元素分别为: 1 3 2 0。

先改变swap数组,在交换index_arr中元素时,也交换存放在to_index中的index_arr的索引。

def swap(self, i, j):
    self.index_arr[i], self.index_arr[j] = self.index_arr[j], self.index_arr[i]
    self.to_index[self.index_arr[i]], self.to_index[self.index_arr[j]] = self.to_index[self.index_arr[j]], \
                                       self.to_index[self.index_arr[i]]

然后在update中,当要更新位置为i的元素时,我们就不需要通过一次遍历才能找到index_arr中该元素的索引,而是直接通过访问index_arr[i]即可访问index_arr中相应索引

def update(self, i, data):
    self.data[i] = data
    target = self.to_index[i]
    self.float_up(target)
    self.sink_down(target)

最后改变pop_left中相应代码,这时我们需要维护三个数组,data_arr,index_arr以及to_index。

仍然是首先将index_arr首位元素交换,并pop出尾部元素存放到i中。然后将头部元素sink_down到相应位置,然后将pop出data_arr索引i处的元素。然后pop出to_index中索引为i的元素,再将index_arr中索引溢出的元素进行调整。

def pop_left(self):
    self.swap(0, len(self) - 1)
    r = self.index_arr.pop()

    self.sink_down(0)
    self.data.pop(r)

    self.to_index.pop(r)
    for i in range(r, len(self)):
      self.index_arr[self.to_index[i]] -= 1

    return r

以上就是python实现对和索引堆的具体方式。希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python多线程编程(八):使用Event实现线程间通信
Apr 05 Python
初步探究Python程序的执行原理
Apr 11 Python
编写Python的web框架中的Model的教程
Apr 29 Python
使用相同的Apache实例来运行Django和Media文件
Jul 22 Python
使用rst2pdf实现将sphinx生成PDF
Jun 07 Python
python爬虫的工作原理
Mar 05 Python
Python3.6通过自带的urllib通过get或post方法请求url的实例
May 10 Python
对python中数据集划分函数StratifiedShuffleSplit的使用详解
Dec 11 Python
Python使用统计函数绘制简单图形实例代码
May 15 Python
python自定义函数实现最大值的输出方法
Jul 09 Python
matplotlib之属性组合包(cycler)的使用
Feb 24 Python
用Python的绘图库(matplotlib)绘制小波能量谱
Apr 17 Python
python实现一个简单的并查集的示例代码
Mar 19 #Python
python使用筛选法计算小于给定数字的所有素数
Mar 19 #Python
python将每个单词按空格分开并保存到文件中
Mar 19 #Python
python将文本分每两行一组并保存到文件
Mar 19 #Python
python: line=f.readlines()消除line中\n的方法
Mar 19 #Python
Python File readlines() 使用方法
Mar 19 #Python
Python cookbook(数据结构与算法)筛选及提取序列中元素的方法
Mar 19 #Python
You might like
php mysqli查询语句返回值类型实例分析
2016/06/29 PHP
PHP入门教程之面向对象基本概念实例分析
2016/09/11 PHP
一个JS翻页效果
2007/07/23 Javascript
复制小说文本时出现的随机乱码的去除方法
2010/09/07 Javascript
JavaScript中判断函数是new还是()调用的区别说明
2011/04/07 Javascript
比较新旧两个数组值得增加和删除的JS代码
2013/10/30 Javascript
对 jQuery 中 data 方法的误解分析
2014/06/18 Javascript
Javascript中获取对象的原型对象的方法小结
2015/02/25 Javascript
jquery基础知识第一讲之认识jquery
2016/03/17 Javascript
使用BootStrap进行轮播图的制作
2017/01/06 Javascript
js实现PC端根据IP定位当前城市地理位置
2017/02/22 Javascript
微信小程序实现瀑布流布局与无限加载的方法详解
2017/05/12 Javascript
详解vue.js移动端导航navigationbar的封装
2017/07/05 Javascript
详解VUE2.X过滤器的使用方法
2018/01/11 Javascript
详解webpack-dev-server使用方法
2018/09/14 Javascript
浅谈Vue.js 中的 v-on 事件指令的使用
2018/11/25 Javascript
详解Vue This$Store总结
2018/12/17 Javascript
Vue.js + Nuxt.js 项目中使用 Vee-validate 表单校验
2019/04/22 Javascript
vue实现二级导航栏效果
2019/10/19 Javascript
Jquery 获取相同NAME 或者id删除行操作
2020/08/24 jQuery
[02:51]DOTA2战队出征照拍摄花絮 TI3明星化身时尚男模
2013/07/22 DOTA
[02:37]2018DOTA2亚洲邀请赛赛前采访-EG篇
2018/04/03 DOTA
在Python中用split()方法分割字符串的使用介绍
2015/05/20 Python
Python类的用法实例浅析
2015/05/27 Python
Python实现LRU算法的2种方法
2015/06/24 Python
Python对ElasticSearch获取数据及操作
2019/04/24 Python
python tools实现视频的每一帧提取并保存
2020/03/20 Python
python3爬取torrent种子链接实例
2020/01/16 Python
使用pyecharts1.7进行简单的可视化大全
2020/05/17 Python
python缩进长度是否统一
2020/08/02 Python
Python中的面向接口编程示例详解
2021/01/17 Python
安全检查验收制度
2014/01/12 职场文书
测量工程专业求职信
2014/02/24 职场文书
关于祖国的演讲稿
2014/05/04 职场文书
关爱留守儿童主题班会
2015/08/13 职场文书
2016中秋节月饼促销广告语
2016/01/28 职场文书