python tensorflow学习之识别单张图片的实现的示例


Posted in Python onFebruary 09, 2018

假设我们已经安装好了tensorflow。

一般在安装好tensorflow后,都会跑它的demo,而最常见的demo就是手写数字识别的demo,也就是mnist数据集。

然而我们仅仅是跑了它的demo而已,可能很多人会有和我一样的想法,如果拿来一张数字图片,如何应用我们训练的网络模型来识别出来,下面我们就以mnist的demo来实现它。

1.训练模型

首先我们要训练好模型,并且把模型model.ckpt保存到指定文件夹

saver = tf.train.Saver()   
saver.save(sess, "model_data/model.ckpt")

将以上两行代码加入到训练的代码中,训练完成后保存模型即可,如果这部分有问题,你可以百度查阅资料,tensorflow怎么保存训练模型,在这里我们就不罗嗦了。

2.测试模型

我们训练好模型后,将它保存在了model_data文件夹中,你会发现文件夹中出现了4个文件

python tensorflow学习之识别单张图片的实现的示例

然后,我们就可以对这个模型进行测试了,将待检测图片放在images文件夹下,执行

# -*- coding:utf-8 -*-  
import cv2 
import tensorflow as tf 
import numpy as np 
from sys import path 
path.append('../..') 
from common import extract_mnist 
 
#初始化单个卷积核上的参数 
def weight_variable(shape): 
  initial = tf.truncated_normal(shape, stddev=0.1) 
  return tf.Variable(initial) 
 
#初始化单个卷积核上的偏置值 
def bias_variable(shape): 
  initial = tf.constant(0.1, shape=shape) 
  return tf.Variable(initial) 
 
#输入特征x,用卷积核W进行卷积运算,strides为卷积核移动步长, 
#padding表示是否需要补齐边缘像素使输出图像大小不变 
def conv2d(x, W): 
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
#对x进行最大池化操作,ksize进行池化的范围, 
def max_pool_2x2(x): 
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') 
 
 
def main(): 
   
  #定义会话 
  sess = tf.InteractiveSession() 
   
  #声明输入图片数据,类别 
  x = tf.placeholder('float',[None,784]) 
  x_img = tf.reshape(x , [-1,28,28,1]) 
 
  W_conv1 = weight_variable([5, 5, 1, 32]) 
  b_conv1 = bias_variable([32]) 
  W_conv2 = weight_variable([5,5,32,64]) 
  b_conv2 = bias_variable([64]) 
  W_fc1 = weight_variable([7*7*64,1024]) 
  b_fc1 = bias_variable([1024]) 
  W_fc2 = weight_variable([1024,10]) 
  b_fc2 = bias_variable([10]) 
 
  saver = tf.train.Saver(write_version=tf.train.SaverDef.V1)  
  saver.restore(sess , 'model_data/model.ckpt') 
 
  #进行卷积操作,并添加relu激活函数 
  h_conv1 = tf.nn.relu(conv2d(x_img,W_conv1) + b_conv1) 
  #进行最大池化 
  h_pool1 = max_pool_2x2(h_conv1) 
 
  #同理第二层卷积层 
  h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2) 
  h_pool2 = max_pool_2x2(h_conv2) 
   
  #将卷积的产出展开 
  h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) 
  #神经网络计算,并添加relu激活函数 
  h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1) 
 
  #输出层,使用softmax进行多分类 
  y_conv=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2) 
 
  # mnist_data_set = extract_mnist.MnistDataSet('../../data/') 
  # x_img , y = mnist_data_set.next_train_batch(1) 
  im = cv2.imread('images/888.jpg',cv2.IMREAD_GRAYSCALE).astype(np.float32) 
  im = cv2.resize(im,(28,28),interpolation=cv2.INTER_CUBIC) 
  #图片预处理 
  #img_gray = cv2.cvtColor(im , cv2.COLOR_BGR2GRAY).astype(np.float32) 
  #数据从0~255转为-0.5~0.5 
  img_gray = (im - (255 / 2.0)) / 255 
  #cv2.imshow('out',img_gray) 
  #cv2.waitKey(0) 
  x_img = np.reshape(img_gray , [-1 , 784]) 
 
  print x_img 
  output = sess.run(y_conv , feed_dict = {x:x_img}) 
  print 'the y_con :  ', '\n',output 
  print 'the predict is : ', np.argmax(output) 
 
  #关闭会话 
  sess.close() 
 
if __name__ == '__main__': 
  main()

ok,贴一下效果图

python tensorflow学习之识别单张图片的实现的示例

输出:

python tensorflow学习之识别单张图片的实现的示例

最后再贴一个cifar10的,感觉我的输入数据有点问题,因为直接读cifar10的数据测试是没问题的,但是换成自己的图片做预处理后输入结果就有问题,(参考:cv2读入的数据是BGR顺序,PIL读入的数据是RGB顺序,cifar10的数据是RGB顺序),哪位童鞋能指出来记得留言告诉我

# -*- coding:utf-8 -*-   
from sys import path 
import numpy as np 
import tensorflow as tf 
import time 
import cv2 
from PIL import Image 
path.append('../..') 
from common import extract_cifar10 
from common import inspect_image 
 
 
#初始化单个卷积核上的参数 
def weight_variable(shape): 
  initial = tf.truncated_normal(shape, stddev=0.1) 
  return tf.Variable(initial) 
 
#初始化单个卷积核上的偏置值 
def bias_variable(shape): 
  initial = tf.constant(0.1, shape=shape) 
  return tf.Variable(initial) 
 
#卷积操作 
def conv2d(x, W): 
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
 
 
def main(): 
  #定义会话 
  sess = tf.InteractiveSession() 
   
  #声明输入图片数据,类别 
  x = tf.placeholder('float',[None,32,32,3]) 
  y_ = tf.placeholder('float',[None,10]) 
 
  #第一层卷积层 
  W_conv1 = weight_variable([5, 5, 3, 64]) 
  b_conv1 = bias_variable([64]) 
  #进行卷积操作,并添加relu激活函数 
  conv1 = tf.nn.relu(conv2d(x,W_conv1) + b_conv1) 
  # pool1 
  pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],padding='SAME', name='pool1') 
  # norm1 
  norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,name='norm1') 
 
 
  #第二层卷积层 
  W_conv2 = weight_variable([5,5,64,64]) 
  b_conv2 = bias_variable([64]) 
  conv2 = tf.nn.relu(conv2d(norm1,W_conv2) + b_conv2) 
  # norm2 
  norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,name='norm2') 
  # pool2 
  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],strides=[1, 2, 2, 1], padding='SAME', name='pool2') 
 
  #全连接层 
  #权值参数 
  W_fc1 = weight_variable([8*8*64,384]) 
  #偏置值 
  b_fc1 = bias_variable([384]) 
  #将卷积的产出展开 
  pool2_flat = tf.reshape(pool2,[-1,8*8*64]) 
  #神经网络计算,并添加relu激活函数 
  fc1 = tf.nn.relu(tf.matmul(pool2_flat,W_fc1) + b_fc1) 
   
  #全连接第二层 
  #权值参数 
  W_fc2 = weight_variable([384,192]) 
  #偏置值 
  b_fc2 = bias_variable([192]) 
  #神经网络计算,并添加relu激活函数 
  fc2 = tf.nn.relu(tf.matmul(fc1,W_fc2) + b_fc2) 
 
 
  #输出层,使用softmax进行多分类 
  W_fc2 = weight_variable([192,10]) 
  b_fc2 = bias_variable([10]) 
  y_conv=tf.maximum(tf.nn.softmax(tf.matmul(fc2, W_fc2) + b_fc2),1e-30) 
 
  # 
  saver = tf.train.Saver() 
  saver.restore(sess , 'model_data/model.ckpt') 
  #input 
  im = Image.open('images/dog8.jpg') 
  im.show() 
  im = im.resize((32,32)) 
  # r , g , b = im.split() 
  # im = Image.merge("RGB" , (r,g,b)) 
  print im.size , im.mode 
 
  im = np.array(im).astype(np.float32) 
  im = np.reshape(im , [-1,32*32*3]) 
  im = (im - (255 / 2.0)) / 255 
  batch_xs = np.reshape(im , [-1,32,32,3]) 
  #print batch_xs 
  #获取cifar10数据 
  # cifar10_data_set = extract_cifar10.Cifar10DataSet('../../data/') 
  # batch_xs, batch_ys = cifar10_data_set.next_train_batch(1) 
  # print batch_ys 
  output = sess.run(y_conv , feed_dict={x:batch_xs}) 
  print output 
  print 'the out put is :' , np.argmax(output) 
  #关闭会话 
  sess.close() 
 
if __name__ == '__main__': 
  main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python解析xml文件实例分析
May 27 Python
Python基于pygame实现的font游戏字体(附源码)
Nov 11 Python
Tensorflow 训练自己的数据集将数据直接导入到内存
Jun 19 Python
python实现定时发送qq消息
Jan 18 Python
使用Python实现毫秒级抢单功能
Jun 06 Python
Python嵌套函数,作用域与偏函数用法实例分析
Dec 26 Python
pytorch实现Tensor变量之间的转换
Feb 17 Python
Python基于yield遍历多个可迭代对象
Mar 12 Python
利用python在excel中画图的实现方法
Mar 17 Python
Python3标准库之threading进程中管理并发操作方法
Mar 30 Python
python如何调用php文件中的函数详解
Dec 29 Python
Python&Matlab实现樱花的绘制
Apr 07 Python
python删除服务器文件代码示例
Feb 09 #Python
详解Python使用tensorflow入门指南
Feb 09 #Python
python编程测试电脑开启最大线程数实例代码
Feb 09 #Python
Python实现对一个函数应用多个装饰器的方法示例
Feb 09 #Python
Python+PIL实现支付宝AR红包
Feb 09 #Python
Python 实现12306登录功能实例代码
Feb 09 #Python
Python多层装饰器用法实例分析
Feb 09 #Python
You might like
php判断并删除空目录及空子目录的方法
2015/02/11 PHP
Ajax+PHP实现的分类列表框功能示例
2019/02/11 PHP
JavaScript语法着色引擎(demo及打包文件下载)
2007/06/13 Javascript
关于捕获用户何时点击window.onbeforeunload的取消事件
2011/03/06 Javascript
仿微博字符限制效果实现代码
2012/04/20 Javascript
不用构造函数(Constructor)new关键字也能实现JavaScript的面向对象
2013/01/11 Javascript
js解析xml字符串和xml文档实现原理及代码(针对ie与火狐)
2013/02/02 Javascript
JS 实现Table相同行的单元格自动合并示例代码
2013/08/27 Javascript
ie7+背景透明文字不透明超级简单的实现方法
2014/01/17 Javascript
jquery插件开发之实现md5插件
2014/03/17 Javascript
javascript结合canvas实现图片旋转效果
2015/05/03 Javascript
JavaScript的String字符串对象常用操作总结
2016/05/26 Javascript
利用css+原生js制作简单的钟表
2020/04/07 Javascript
JS中的作用域链
2017/03/01 Javascript
jQuery模拟下拉框选择对应菜单的内容
2017/03/07 Javascript
Javascript中字符串相关常用的使用方法总结
2017/03/13 Javascript
js实现全选反选不选功能代码详解
2019/04/24 Javascript
JS实现简单省市二级联动
2019/11/27 Javascript
JS代码优化的8点建议
2020/02/04 Javascript
js实现点赞效果
2020/03/16 Javascript
微信小程序手动添加收货地址省市区联动
2020/05/18 Javascript
[03:09]2014DOTA2国际邀请赛 Mushi前队友送上祝福
2014/07/12 DOTA
python模拟鼠标拖动操作的方法
2015/03/11 Python
python处理数据,存进hive表的方法
2018/07/04 Python
django 环境变量配置过程详解
2019/08/06 Python
波兰最大的儿童服装连锁店之一:5.10.15.
2018/02/11 全球购物
德国购买门票网站:ADticket.de
2019/10/31 全球购物
日本亚马逊官方网站:Amazon.co.jp
2020/04/14 全球购物
入党积极分子自我鉴定
2014/02/18 职场文书
歌唱比赛主持词
2014/03/18 职场文书
护士求职自荐信范文
2014/03/19 职场文书
机关作风建设剖析材料
2014/10/11 职场文书
员工辞职信怎么写
2015/02/27 职场文书
2015年精神文明建设工作总结
2015/04/21 职场文书
《确定位置》教学反思
2016/02/18 职场文书
《进击的巨人》新联动CM 兵长强势出击兽巨人
2022/04/05 日漫