教你如何让spark sql写mysql的时候支持update操作


Posted in MySQL onFebruary 15, 2022

如何让sparkSQL在对接mysql的时候,除了支持:Append、Overwrite、ErrorIfExists、Ignore;还要在支持update操作

1、首先了解背景

spark提供了一个枚举类,用来支撑对接数据源的操作模式

教你如何让spark sql写mysql的时候支持update操作

通过源码查看,很明显,spark是不支持update操作的

2、如何让sparkSQL支持update

关键的知识点就是:

我们正常在sparkSQL写数据到mysql的时候:

大概的api是:

dataframe.write
          .format("sql.execution.customDatasource.jdbc")
          .option("jdbc.driver", "com.mysql.jdbc.Driver")
          .option("jdbc.url", "jdbc:mysql://localhost:3306/test?user=root&password=&useUnicode=true&characterEncoding=gbk&autoReconnect=true&failOverReadOnly=false")
          .option("jdbc.db", "test")
          .save()

那么在底层中,spark会通过JDBC方言JdbcDialect , 将我们要插入的数据翻译成:

insert into student (columns_1 , columns_2 , ...) values (? , ? , ....)

那么通过方言解析出的sql语句就通过PrepareStatement的executeBatch(),将sql语句提交给mysql,然后数据插入;

那么上面的sql语句很明显,完全就是插入代码,并没有我们期望的 update操作,类似:

UPDATE table_name SET field1=new-value1, field2=new-value2

但是mysql独家支持这样的sql语句:

INSERT INTO student (columns_1,columns_2)VALUES ('第一个字段值','第二个字段值') ON DUPLICATE KEY UPDATE columns_1 = '呵呵哒',columns_2 = '哈哈哒';

大概的意思就是,如果数据不存在则插入,如果数据存在,则 执行update操作;

因此,我们的切入点就是,让sparkSQL内部对接JdbcDialect的时候,能够生成这种sql:

INSERT INTO 表名称 (columns_1,columns_2)VALUES ('第一个字段值','第二个字段值') ON DUPLICATE KEY UPDATE columns_1 = '呵呵哒',columns_2 = '哈哈哒';

3、改造源码前,需要了解整体的代码设计和执行流程

首先是:

dataframe.write

调用write方法就是为了返回一个类:DataFrameWriter

主要是因为DataFrameWriter是sparksql对接外部数据源写入的入口携带类,下面这些内容是给DataFrameWriter注册的携带信息

教你如何让spark sql写mysql的时候支持update操作

然后在出发save()操作后,就开始将数据写入;

接下来看save()源码:

教你如何让spark sql写mysql的时候支持update操作

在上面的源码里面主要是注册DataSource实例,然后使用DataSource的write方法进行数据写入

实例化DataSource的时候:

def save(): Unit = {
    assertNotBucketed("save")
    val dataSource = DataSource(
      df.sparkSession,
      className = source,//自定义数据源的包路径
      partitionColumns = partitioningColumns.getOrElse(Nil),//分区字段
      bucketSpec = getBucketSpec,//分桶(用于hive)
      options = extraOptions.toMap)//传入的注册信息
    //mode:插入数据方式SaveMode , df:要插入的数据
    dataSource.write(mode, df)
  }

然后就是dataSource.write(mode, df)的细节,整段的逻辑就是:

根据providingClass.newInstance()去做模式匹配,然后匹配到哪里,就执行哪里的代码;

教你如何让spark sql写mysql的时候支持update操作

然后看下providingClass是什么:

教你如何让spark sql写mysql的时候支持update操作

教你如何让spark sql写mysql的时候支持update操作

拿到包路径.DefaultSource之后,程序进入:

教你如何让spark sql写mysql的时候支持update操作

那么如果是数据库作为写入目标的话,就会走:dataSource.createRelation,直接跟进源码:

教你如何让spark sql写mysql的时候支持update操作

很明显是个特质,因此哪里实现了特质,程序就会走到哪里了;

实现这个特质的地方就是:包路径.DefaultSource , 然后就在这里面去实现数据的插入和update的支持操作;

4、改造源码

根据代码的流程,最终sparkSQL 将数据写入mysql的操作,会进入:包路径.DefaultSource这个类里面;

也就是说,在这个类里面既要支持spark的正常插入操作(SaveMode),还要在支持update;

如果让sparksql支持update操作,最关键的就是做一个判断,比如:

if(isUpdate){
    sql语句:INSERT INTO student (columns_1,columns_2)VALUES ('第一个字段值','第二个字段值') ON DUPLICATE KEY UPDATE columns_1 = '呵呵哒',columns_2 = '哈哈哒';
}else{
    insert into student (columns_1 , columns_2 , ...) values (? , ? , ....)
}

但是,在spark生产sql语句的源码中,是这样写的:

教你如何让spark sql写mysql的时候支持update操作

没有任何的判断逻辑,就是最后生成一个:

INSERT INTO TABLE (字段1 , 字段2....) VALUES (? , ? ...)

所以首要的任务就是 ,怎么能让当前代码支持:ON DUPLICATE KEY UPDATE

可以做个大胆的设计,就是在insertStatement这个方法中做个如下的判断

def insertStatement(conn: Connection, savemode:CustomSaveMode , table: String, rddSchema: StructType, dialect: JdbcDialect)
      : PreparedStatement = {
    val columns = rddSchema.fields.map(x => dialect.quoteIdentifier(x.name)).mkString(",")
    val placeholders = rddSchema.fields.map(_ => "?").mkString(",")
    if(savemode == CustomSaveMode.update){
        //TODO 如果是update,就组装成ON DUPLICATE KEY UPDATE的模式处理
        s"INSERT INTO $table ($columns) VALUES ($placeholders) ON DUPLICATE KEY UPDATE $duplicateSetting"
    }esle{
        val sql = s"INSERT INTO $table ($columns) VALUES ($placeholders)"
        conn.prepareStatement(sql)
    }
    
  }

这样,在用户传递进来的savemode模式,我们进行校验,如果是update操作,就返回对应的sql语句!

所以按照上面的逻辑,我们代码这样写:

教你如何让spark sql写mysql的时候支持update操作

这样我们就拿到了对应的sql语句;

但是只有这个sql语句还是不行的,因为在spark中会执行jdbc的prepareStatement操作,这里面会涉及到游标。

即jdbc在遍历这个sql的时候,源码会这样做:

教你如何让spark sql写mysql的时候支持update操作

看下makeSetter:

教你如何让spark sql写mysql的时候支持update操作

所谓有坑就是:

insert into table (字段1 , 字段2, 字段3) values (? , ? , ?)

那么当前在源码中返回的数组长度应该是3:

val setters: Array[JDBCValueSetter] = rddSchema.fields.map(_.dataType)
        .map(makeSetter(conn, dialect, _)).toArray

但是如果我们此时支持了update操作,既:

insert into table (字段1 , 字段2, 字段3) values (? , ? , ?) ON DUPLICATE KEY UPDATE 字段1 = ?,字段2 = ?,字段3=?;

那么很明显,上面的sql语句提供了6个? , 但在规定字段长度的时候只有3

教你如何让spark sql写mysql的时候支持update操作

这样的话,后面的update操作就无法执行,程序报错!

所以我们需要有一个 识别机制,既:

if(isupdate){
    val numFields = rddSchema.fields.length * 2
}else{
    val numFields = rddSchema.fields.length
}

教你如何让spark sql写mysql的时候支持update操作

row[1,2,3] setter(0,1) //index of setter , index of row setter(1,2) setter(2,3) setter(3,1) setter(4,2) setter(5,3)

所以在prepareStatment中的占位符应该是row的两倍,而且应该是类似这样的一个逻辑

因此,代码改造前样子:

教你如何让spark sql写mysql的时候支持update操作

教你如何让spark sql写mysql的时候支持update操作

改造后的样子:

try {
      if (supportsTransactions) {
        conn.setAutoCommit(false) // Everything in the same db transaction.
        conn.setTransactionIsolation(finalIsolationLevel)
      }
//      val stmt = insertStatement(conn, table, rddSchema, dialect)
      //此处采用最新自己的sql语句,封装成prepareStatement
      val stmt = conn.prepareStatement(sqlStmt)
      println(sqlStmt)
      /**
        * 在mysql中有这样的操作:
        * INSERT INTO user_admin_t (_id,password) VALUES ('1','第一次插入的密码')
        * INSERT INTO user_admin_t (_id,password)VALUES ('1','第一次插入的密码') ON DUPLICATE KEY UPDATE _id = 'UpId',password = 'upPassword';
        * 如果是下面的ON DUPLICATE KEY操作,那么在prepareStatement中的游标会扩增一倍
        * 并且如果没有update操作,那么他的游标是从0开始计数的
        * 如果是update操作,要算上之前的insert操作
        * */
        //makeSetter也要适配update操作,即游标问题
​
      val isUpdate = saveMode == CustomSaveMode.Update
      val setters: Array[JDBCValueSetter] = isUpdate match {
        case true =>
          val setters: Array[JDBCValueSetter] = rddSchema.fields.map(_.dataType)
            .map(makeSetter(conn, dialect, _)).toArray
          Array.fill(2)(setters).flatten
        case _ =>
          rddSchema.fields.map(_.dataType)
      val numFieldsLength = rddSchema.fields.length
      val numFields = isUpdate match{
        case true => numFieldsLength *2
        case _ => numFieldsLength
      val cursorBegin = numFields / 2
      try {
        var rowCount = 0
        while (iterator.hasNext) {
          val row = iterator.next()
          var i = 0
          while (i < numFields) {
            if(isUpdate){
              //需要判断当前游标是否走到了ON DUPLICATE KEY UPDATE
              i < cursorBegin match{
                  //说明还没走到update阶段
                case true =>
                  //row.isNullAt 判空,则设置空值
                  if (row.isNullAt(i)) {
                    stmt.setNull(i + 1, nullTypes(i))
                  } else {
                    setters(i).apply(stmt, row, i, 0)
                  }
                  //说明走到了update阶段
                case false =>
                  if (row.isNullAt(i - cursorBegin)) {
                    //pos - offset
                    stmt.setNull(i + 1, nullTypes(i - cursorBegin))
                    setters(i).apply(stmt, row, i, cursorBegin)
              }
            }else{
              if (row.isNullAt(i)) {
                stmt.setNull(i + 1, nullTypes(i))
              } else {
                setters(i).apply(stmt, row, i ,0)
            }
            //滚动游标
            i = i + 1
          }
          stmt.addBatch()
          rowCount += 1
          if (rowCount % batchSize == 0) {
            stmt.executeBatch()
            rowCount = 0
        }
        if (rowCount > 0) {
          stmt.executeBatch()
      } finally {
        stmt.close()
        conn.commit()
      committed = true
      Iterator.empty
    } catch {
      case e: SQLException =>
        val cause = e.getNextException
        if (cause != null && e.getCause != cause) {
          if (e.getCause == null) {
            e.initCause(cause)
          } else {
            e.addSuppressed(cause)
        throw e
    } finally {
      if (!committed) {
        // The stage must fail.  We got here through an exception path, so
        // let the exception through unless rollback() or close() want to
        // tell the user about another problem.
        if (supportsTransactions) {
          conn.rollback()
        conn.close()
      } else {
        // The stage must succeed.  We cannot propagate any exception close() might throw.
        try {
          conn.close()
        } catch {
          case e: Exception => logWarning("Transaction succeeded, but closing failed", e)
// A `JDBCValueSetter` is responsible for setting a value from `Row` into a field for
  // `PreparedStatement`. The last argument `Int` means the index for the value to be set
  // in the SQL statement and also used for the value in `Row`.
  //PreparedStatement, Row, position , cursor
  private type JDBCValueSetter = (PreparedStatement, Row, Int , Int) => Unit
​
  private def makeSetter(
      conn: Connection,
      dialect: JdbcDialect,
      dataType: DataType): JDBCValueSetter = dataType match {
    case IntegerType =>
      (stmt: PreparedStatement, row: Row, pos: Int,cursor:Int) =>
        stmt.setInt(pos + 1, row.getInt(pos - cursor))
    case LongType =>
        stmt.setLong(pos + 1, row.getLong(pos - cursor))
    case DoubleType =>
        stmt.setDouble(pos + 1, row.getDouble(pos - cursor))
    case FloatType =>
        stmt.setFloat(pos + 1, row.getFloat(pos - cursor))
    case ShortType =>
        stmt.setInt(pos + 1, row.getShort(pos - cursor))
    case ByteType =>
        stmt.setInt(pos + 1, row.getByte(pos - cursor))
    case BooleanType =>
        stmt.setBoolean(pos + 1, row.getBoolean(pos - cursor))
    case StringType =>
//        println(row.getString(pos))
        stmt.setString(pos + 1, row.getString(pos - cursor))
    case BinaryType =>
        stmt.setBytes(pos + 1, row.getAs[Array[Byte]](pos - cursor))
    case TimestampType =>
        stmt.setTimestamp(pos + 1, row.getAs[java.sql.Timestamp](pos - cursor))
    case DateType =>
        stmt.setDate(pos + 1, row.getAs[java.sql.Date](pos - cursor))
    case t: DecimalType =>
        stmt.setBigDecimal(pos + 1, row.getDecimal(pos - cursor))
    case ArrayType(et, _) =>
      // remove type length parameters from end of type name
      val typeName = getJdbcType(et, dialect).databaseTypeDefinition
        .toLowerCase.split("\\(")(0)
        val array = conn.createArrayOf(
          typeName,
          row.getSeq[AnyRef](pos - cursor).toArray)
        stmt.setArray(pos + 1, array)
    case _ =>
      (_: PreparedStatement, _: Row, pos: Int,cursor:Int) =>
        throw new IllegalArgumentException(
          s"Can't translate non-null value for field $pos")
  }

完整代码:

https://github.com/niutaofan/bazinga

到此这篇关于教你如何让spark sql写mysql的时候支持update操作的文章就介绍到这了,更多相关spark sql写mysql支持update内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

MySQL 相关文章推荐
浅析InnoDB索引结构
Apr 05 MySQL
mysql的MVCC多版本并发控制的实现
Apr 14 MySQL
MySQL 慢查询日志深入理解
Apr 22 MySQL
详解MySQL 联合查询优化机制
May 10 MySQL
简单了解 MySQL 中相关的锁
May 25 MySQL
QT连接MYSQL数据库的详细步骤
Jul 07 MySQL
mysql配置SSL证书登录的实现
Sep 04 MySQL
MySQL定时备份数据库(全库备份)的实现
Sep 25 MySQL
MySQL分库分表详情
Sep 25 MySQL
MySQL数据库必备之条件查询语句
Oct 15 MySQL
MySQL生成千万测试数据以及遇到的问题
Aug 05 MySQL
一文解答什么是MySQL的回表
Aug 05 MySQL
一文弄懂MySQL中redo log与binlog的区别
Feb 15 #MySQL
Mysql Innodb存储引擎之索引与算法
深入讲解数据库中Decimal类型的使用以及实现方法
Mysql分库分表之后主键处理的几种方法
MySQL 开窗函数
mysql自增长id用完了该怎么办
Feb 12 #MySQL
mysql下的max_allowed_packet参数设置详解
Feb 12 #MySQL
You might like
php include的妙用,实现路径加密
2008/07/29 PHP
php封装好的人民币数值转中文大写类
2015/12/20 PHP
javascript css float属性的特殊写法
2008/11/13 Javascript
json格式化/压缩工具 Chrome插件扩展版
2010/05/25 Javascript
Javascript表达式中连续的 &amp;&amp; 和 || 之赋值区别
2010/10/17 Javascript
基于jQuery的为attr添加id title等效果的实现代码
2011/04/20 Javascript
40款非常棒的jQuery 插件和制作教程(系列二)
2011/11/02 Javascript
浅析javascript 定时器
2014/12/23 Javascript
JS中字符串trim()使用示例
2015/05/26 Javascript
Vue.js系列之项目搭建(1)
2017/01/03 Javascript
JS实现的简单图片切换功能示例【测试可用】
2017/02/14 Javascript
jQuery实现选项卡功能(两种方法)
2017/03/08 Javascript
微信小程序多张图片上传功能
2017/06/07 Javascript
微信小程序支付之c#后台实现方法
2017/10/19 Javascript
pace.js和NProgress.js两个加载进度插件的一点小总结
2018/01/31 Javascript
脚手架vue-cli工程webpack的基本用法详解
2018/09/29 Javascript
一文看懂如何简单实现节流函数和防抖函数
2019/09/05 Javascript
js实现弹幕飞机效果
2020/08/27 Javascript
[10:18]2018DOTA2国际邀请赛寻真——找回自信的TNCPredator
2018/08/13 DOTA
[48:48]VGJ.T vs Liquid 2018国际邀请赛小组赛BO2 第二场 8.19
2018/08/21 DOTA
python清除指定目录内所有文件中script的方法
2015/06/30 Python
python3+PyQt5使用数据库窗口视图
2018/04/24 Python
Python实现查找数组中任意第k大的数字算法示例
2019/01/23 Python
Django 接收Post请求数据,并保存到数据库的实现方法
2019/07/12 Python
详解Python用三种方式统计词频的方法
2019/07/29 Python
Python类及获取对象属性方法解析
2020/06/15 Python
Html5 实现微信分享及自定义内容的流程
2019/08/20 HTML / CSS
HTML5 Canvas实现放大镜效果示例
2020/03/25 HTML / CSS
营销与策划专业毕业生求职信
2013/11/01 职场文书
优秀会计求职信
2014/07/04 职场文书
我爱幼儿园演讲稿
2014/09/11 职场文书
2014年车间主任工作总结
2014/12/10 职场文书
长城的导游词
2015/01/30 职场文书
JAVA API 实用类 String详解
2021/10/05 Java/Android
如何优化vue打包文件过大
2022/04/13 Vue.js
python数字图像处理之对比度与亮度调整示例
2022/06/28 Python