浅析InnoDB索引结构

InnoDB表的索引有哪些特性,以及索引组织结构是怎样的

Posted in MySQL onApril 05, 2021

1、InnoDB聚集索引特点

我们知道,InnoDB引擎的聚集索引组织表,必然会有一个聚集索引。

行数据(row data)存储在聚集索引的叶子节点(除了发生overflow的列,参见 ,后面简称 “前置文”),并且其存储的相对顺序取决于聚集索引的顺序。这里说相对顺序而不是物理顺序,是因为叶子节点数据页中,行数据的物理顺序和相对顺序可能并不是一致的,放在后面会讲。

InnoDB聚集索引的选择先后顺序是这样的:

  1. 如果有显式定义的主键(PRIMARY KEY),则会选择该主键作为聚集索引
  2. 否则,选择第一个所有列都不允许为NULL的唯一索引
  3. 若前两者都没有,则InnoDB会选择内置的DB_ROW_ID作为聚集索引,命名为GEN_CLUST_INDEX

特别提醒: DB_ROW_ID占用6个字节,每次自增,且是整个实例内全局分配。也就是说,当前实例如果有多个表都采用了内置的DB_ROW_ID作为聚集索引,则在这些表插入新数据时,他们的内置DB_ROW_ID值并不是连续的,而是跳跃的。像下面这样:

t1表的ROW_ID:1、3、7、10
t2表的ROW_ID:2、4、5、6、8、9

2、InnoDB索引结构

InnoDB默认的索引数据结构采用B+树(空间索引采用R树),索引数据存储在叶子节点。

InnoDB的基本I/O存储单位是数据页(page),一个page默认是16KB。我们在 前置文 说过,每个page默认会预留1/16空闲空间用于后续数据“变长”更新所需,因此在最理想的顺序插入状态下,其产生的碎片也最少,这时候差不多能填满15/16的page空间。如果是随机写入的话,则page空间利用率大概是1/2 ~ 15/16。

当 row_format = DYNAMIC|COMPRESSED 时,索引最多长度为 3072字节,当 row_format = REDUNDANT|COMPACT 时,索引最大长度为 767字节。当page size不是默认的16KB时,最大索引长度限制也会跟着发生变化。

我们接下来分别验证关于InnoDB索引的基本结构特点。

首先创建如下测试表:

[root@yejr.me] [innodb]> CREATE TABLE `t1` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `c1` int(10) unsigned NOT NULL DEFAULT '0',
  `c2` varchar(100) NOT NULL,
  `c3` varchar(100) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `c1` (`c1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
用下面的方法写入10条测试数据:
set @uuid1=uuid(); set @uuid2=uuid();
insert into t1 select 0, round(rand()*1024),
                @uuid1, concat(@uuid1, @uuid2);
看下 t1 表的整体结构:
# 用innodb_ruby工具查看
[root@yejr.me]# innodb_space -s ibdata1 -T innodb/t1 space-indexes
id    name       root   fseg        fseg_id   used    allocated   fill_factor
238   PRIMARY    3      internal    1         1       1           100.00%
238   PRIMARY    3      leaf        2         0       0           0.00%
239   c1         4      internal    3         1       1           100.00%
239   c1         4      leaf        4         0       0           0.0

# 用innblock工具查看
[root@yejr.me]# innblock innodb/t1.ibd scan 16
...
===INDEX_ID:238
level0 total block is (1)
block_no:     3,level:   0|*|
===INDEX_ID:239
level0 total block is (1)
block_no:     4,level:   0|*|
可以看到
索引ID 索引类型 根节点page no 索引层高
238 主键索引(聚集索引) 3 1
239 辅助索引 4 1

3、InnoDB索引特点验证

3.1 特点1:聚集索引叶子节点存储整行数据

先扫描第3个page,截取其中第一条物理记录的内容:
[root@yejr.me]# innodb_space -s ibdata1 -T innodb/t1 -p 3 page-dump
...
records:
{:format=>:compact,
 :offset=>127,
 :header=>
  {:next=>263,
   :type=>:conventional,
   :heap_number=>2,
   :n_owned=>0,
   :min_rec=>false,
   :deleted=>false,
   :nulls=>[],
   :lengths=>{"c2"=>36, "c3"=>72},
   :externs=>[],
   :length=>7},
 :next=>263,
 :type=>:clustered,
 #第一条物理记录,id=1
 :key=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>1}],
 :row=>
  [{:name=>"c1", :type=>"INT UNSIGNED", :value=>777},
   {:name=>"c2",
    :type=>"VARCHAR(400)",
    :value=>"a1c1a7c7-bda5-11e9-8476-0050568bba82"},
   {:name=>"c3",
    :type=>"VARCHAR(400)",
    :value=>
     "a1c1a7c7-bda5-11e9-8476-0050568bba82a1c1aec5-bda5-11e9-8476-0050568bba82"}],
 :sys=>
  [{:name=>"DB_TRX_ID", :type=>"TRX_ID", :value=>10950},
   {:name=>"DB_ROLL_PTR",
    :type=>"ROLL_PTR",
    :value=>
     {:is_insert=>true,
      :rseg_id=>119,
      :undo_log=>{:page=>469, :offset=>272}}}],
 :length=>129,
 :transaction_id=>10950,
 :roll_pointer=>
  {:is_insert=>true, :rseg_id=>119, :undo_log=>{:page=>469, :offset=>272}}}

很明显,的确是存储了整条数据的内容。

聚集索引树的键值(key)是主键索引值(i=10),聚集索引节点值(value)是其他非聚集索引列(c1,c2,c3)以及隐含列(DB_TRX_ID、DB_ROLL_PTR)。

优化建议1:尽量不要存储大对象数据,使得每个叶子节点都能存储更多数据,降低碎片率,提高buffer pool利用率。此外也能尽量避免发生overflow

3.2 特点2:聚集索引非叶子节点存储指向子节点的指针

对上面的测试表继续写入新数据,直到聚集索引树从一层分裂成两层。

我们根据旧文 InnoDB表聚集索引层高什么时候发生变化 里的计算方式,推算出来预计一个叶子节点最多可存储111条记录,因此在插入第112条记录时,就会从一层高度分裂成两层高度。经过实测,也的确是如此。

[root@yejr.me] [innodb]>select count(*) from t1;
+----------+
| count(*) |
+----------+
|      112 |
+----------+

[root@yejr.me]# innblock innodb/t1.ibd scan 16
...
===INDEX_ID:238
level1 total block is (1)
block_no:     3,level:   1|*|
level0 total block is (2)
block_no:     5,level:   0|*|block_no:     6,level:   0|*|
...

此时可以看到根节点依旧是pageno=3,而叶子节点变成了[5, 6]两个page。由此可知,根节点上应该只有两条物理记录,存储着分别指向pageno=[5, 6]这两个page的指针。

我们解析下3号page,看看它的具体结构:

[root@yejr.me]# innodb_space -s ibdata1 -T innodb/t1 -p 3 page-dump
...
records:
{:format=>:compact,
 :offset=>125,
 :header=>
  {:next=>138,
   :type=>:node_pointer,
   :heap_number=>2,
   :n_owned=>0,
   :min_rec=>true, #第一条记录是min_key
   :deleted=>false,
   :nulls=>[],
   :lengths=>{},
   :externs=>[],
   :length=>5},
 :next=>138,
 :type=>:clustered,
 #第一条记录,只存储key值
 :key=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>1}],
 :row=>[],
 :sys=>[],
 :child_page_number=>5, #value值是指向的叶子节点pageno=5
 :length=>8} #整条记录消耗8字节,除去key值4字节外,指针也需要4字节

{:format=>:compact,
 :offset=>138,
 :header=>
  {:next=>112,
   :type=>:node_pointer,
   :heap_number=>3,
   :n_owned=>0,
   :min_rec=>false,
   :deleted=>false,
   :nulls=>[],
   :lengths=>{},
   :externs=>[],
   :length=>5},
 :next=>112,
 :type=>:clustered,
 #第二条记录,只存储key值
 :key=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>56}],
 :row=>[],
 :sys=>[],
 :child_page_number=>6, #value值是指向的叶子节点pageno=6
 :length=>8}

优化建议2: 索引列数据长度越小越好,这样索引树存储效率越高,在非叶子节点能存储越多数据,延缓索引树层高分裂的速度,平均搜索效率更高

3.3 特点3:辅助索引同时会存储主键索引列值

在辅助索引中,总是同时会存储主键索引(或者说聚集索引)的列值,其作用就是在对辅助索引扫描时,可以从叶子节点直接得到对应的聚集索引值,并可根据该值回表查询获取行数据(如果需要回表查询的话)。这个特性也被称为Index Extensions(5.6版本之后的优化器新特性,详见 Use of Index Extensions)。

此外,在辅助索引的非叶子节点中,索引记录的key值是索引定义的列值,而对应的value值则是聚集索引列值(简称PKV)。如果辅助索引定义时已经包含了部分聚集索引列,则索引记录的value值是未被包含的余下的聚集索引列值。

创建如下测试表:

CREATE TABLE `t3` (
  `a` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `b` int(10) unsigned NOT NULL DEFAULT '0',
  `c` varchar(20) NOT NULL DEFAULT '',
  `d` varchar(20) NOT NULL DEFAULT '',
  `e` varchar(20) NOT NULL DEFAULT '',
  PRIMARY KEY (`a`,`b`),
  KEY `k1` (`c`,`b`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
随机插入一些测试数据:
# 调用shell脚本写入500条数据
[root@yejr.me]# cat insert.sh
#!/bin/bash
. ~/.bash_profile
cd /data/perconad
i=1
max=500
while [ $i -le $max ]
do
 mysql -Smysql.sock -e "insert ignore into t3 select
    rand()*1024, rand()*1024, left(md5(uuid()),20) ,
    left(uuid(),20), left(uuid(),20);" innodb
 i=`expr $i + 1`
done

# 实际写入498条数据(其中有2条主键冲突失败)
[root@yejr.me] [innodb]>select count(*) from t3;
+----------+
| count(*) |
+----------+
|      498 |
+----------+
解析数据结构:
# 主键
[root@test1 perconad]# innodb_space -s ibdata1 -T innodb/t2 space-indexes
id    name     root  fseg        fseg_id   used   allocated   fill_factor
245   PRIMARY  3     internal    1         1      1           100.00%
245   PRIMARY  3     leaf        2         5      5           100.00%
246   k1       4     internal    3         1      1           100.00%
246   k1       4     leaf        4         2      2           1

[root@yejr.me]# innodb_space -s ibdata1 -T innodb/t2 -p 4 page-dump
...
records:
{:format=>:compact,
 :offset=>126,
 :header=>
  {:next=>164,
   :type=>:node_pointer,
   :heap_number=>2,
   :n_owned=>0,
   :min_rec=>true,
   :deleted=>false,
   :nulls=>[],
   :lengths=>{"c"=>20},
   :externs=>[],
   :length=>6},
 :next=>164,
 :type=>:secondary,
 :key=>
  [{:name=>"c", :type=>"VARCHAR(80)", :value=>"00a5d42dd56632893b5f"},
   {:name=>"b", :type=>"INT UNSIGNED", :value=>323}],
 :row=>
  [{:name=>"a", :type=>"INT UNSIGNED", :value=>310},
   {:name=>"b", :type=>"INT UNSIGNED", :value=>9}],
   # 此处给解析成b列的值了,实际上是指向叶子节点的指针,即child_page_number=9
   # b列真实值是323
 :sys=>[],
 :child_page_number=>335544345,
 # 此处解析不准确,实际上是下一条记录的record header,共6个字节
 :length=>36}

{:format=>:compact,
 :offset=>164,
 :header=>
  {:next=>112,
   :type=>:node_pointer,
   :heap_number=>3,
   :n_owned=>0,
   :min_rec=>false,
   :deleted=>false,
   :nulls=>[],
   :lengths=>{"c"=>20},
   :externs=>[],
   :length=>6},
 :next=>112,
 :type=>:secondary,
 :key=>
  [{:name=>"c", :type=>"VARCHAR(80)", :value=>"7458824a39892aa77e1a"},
   {:name=>"b", :type=>"INT UNSIGNED", :value=>887}],
 :row=>
  [{:name=>"a", :type=>"INT UNSIGNED", :value=>623},
   {:name=>"b", :type=>"INT UNSIGNED", :value=>10}],
   # 同上,其实是child_page_number=10,而非b列的值
 :sys=>[],
 :child_page_number=>0,
 :length=>36} #数据长度16字节

顺便说下,辅助索引上没存储TRX_ID, ROLL_PTR这些(他们只存储在聚集索引上)。

上面用innodb_ruby工具解析的非叶子节点部分内容不够准确,所以我们用二进制方式打开数据文件二次求证确认:

# 此处也可以用 hexdump 工具
[root@yejr.me]# vim -b path/t3.ibd
...
:%!xxd

# 找到辅助索引所在的那部分数据
0010050: 0002 0272 0000 00e1 0000 0002 01b2 0100  ...r............
0010060: 0200 1b69 6e66 696d 756d 0003 000b 0000  ...infimum......
0010070: 7375 7072 656d 756d 1410 0011 0026 3030  supremum.....&00
0010080: 6135 6434 3264 6435 3636 3332 3839 3362  a5d42dd56632893b
0010090: 3566 0000 0143 0000 0136 0000 0009 1400  5f...C...6......
00100a0: 0019 ffcc 3734 3538 3832 3461 3339 3839  ....7458824a3989
00100b0: 3261 6137 3765 3161 0000 0377 0000 026f  2aa77e1a...w...o
00100c0: 0000 000a 0000 0000 0000 0000 0000 0000  ................

# 参考page物理结构方式进行解析,得到下面的结果
/* 第一条记录 */
1410 0011 0026, record header, 5字节
3030 6135 6434 3264 6435 3636 3332 3839 3362 3566,c='00a5d42dd56632893b5f',20B
0000 0143, b=323, 4B
0000 0136, a=310, 4B
0000 0009, child_pageno=9, 4B

/* 2 */
1400 0019 ffcc, record header
3734 3538 3832 3461 3339 3839 3261 6137 3765 3161, c='7458824a39892aa77e1a'
0000 0377, b=887
0000 026f, a=623
0000 000a, child_pageno=10

现在反过来看,上面用innodb_ruby工具解析出来的page-dump结果应该是这样的才对(我只选取一条记录,请自行对比和之前的不同之处):

{:format=>:compact,
 :offset=>164,
 :header=>
  {:next=>112,
   :type=>:node_pointer,
   :heap_number=>3,
   :n_owned=>0,
   :min_rec=>false,
   :deleted=>false,
   :nulls=>[],
   :lengths=>{"c"=>20},
   :externs=>[],
   :length=>6},
 :next=>112,
 :type=>:secondary,
 :key=>
  [{:name=>"c", :type=>"VARCHAR(80)", :value=>"7458824a39892aa77e1a"},
   {:name=>"b", :type=>"INT UNSIGNED", :value=>887}],
 :row=> [{:name=>"a", :type=>"INT UNSIGNED", :value=>623}],
 :sys=>[],
 :child_page_number=>10,
 :length=>36}

可以看到,的确如前面所说,辅助索引的非叶子节点的value值存储的是聚集索引列值

优化建议3:辅助索引列定义的长度越小越好,定义辅助索引时,没必要显式的加上聚集索引列(5.6版本之后)

3.4 特点4:没有可用的聚集索引列时,会使用内置的ROW_ID作为聚集索引

创建几个像下面这样的表,使其选择内置的ROW_ID作为聚集索引:

[root@yejr.me] [innodb]> CREATE TABLE `tn1` (
  `c1` int(10) unsigned NOT NULL DEFAULT 0,
  `c2` int(10) unsigned NOT NULL DEFAULT 0
) ENGINE=InnoDB;
循环对几个表写数据:
insert into tt1 select 1,1;
insert into tt2 select 1,1;
insert into tt3 select 1,1;
insert into tt1 select 2,2;
insert into tt2 select 2,2;
insert into tt3 select 2,2;

查看 tn1 - tn3 表里的数据(这里由于innodb_ruby工具解析的结果不准确,所以我改用hexdump来分析):

tn1
000c060: 0200 1a69 6e66 696d 756d 0003 000b 0000  ...infimum......
000c070: 7375 7072 656d 756d 0000 1000 2000 0000  supremum.... ...
000c080: 0003 1200 0000 003d f6aa 0000 01d9 0110  .......=........
000c090: 0000 0001 0000 0001 0000 18ff d300 0000  ................
000c0a0: 0003 1500 0000 003d f9ad 0000 01da 0110  .......=........
000c0b0: 0000 0002 0000 0002 0000 0000 0000 0000  ................

tn2
000c060: 0200 1a69 6e66 696d 756d 0003 000b 0000  ...infimum......
000c070: 7375 7072 656d 756d 0000 1000 2000 0000  supremum.... ...
000c080: 0003 1300 0000 003d f7ab 0000 0122 0110  .......=....."..
000c090: 0000 0001 0000 0001 0000 18ff d300 0000  ................
000c0a0: 0003 1600 0000 003d feb0 0000 01db 0110  .......=........
000c0b0: 0000 0002 0000 0002 0000 0000 0000 0000  ................

tn3
000c060: 0200 1a69 6e66 696d 756d 0003 000b 0000  ...infimum......
000c070: 7375 7072 656d 756d 0000 1000 2000 0000  supremum.... ...
000c080: 0003 1400 0000 003d f8ac 0000 0123 0110  .......=.....#..
000c090: 0000 0001 0000 0001 0000 18ff d300 0000  ................
000c0a0: 0003 1700 0000 003e 03b3 0000 012a 0110  .......>.....*..
000c0b0: 0000 0002 0000 0002 0000 0000 0000 0000  ................
其中表示DB_ROW_ID的值分别是:
tn1
0003 12 => (1,1)
0003 15 => (2,2)

tn2
0003 13 => (1,1)
0003 16 => (2,2)

tn3
0003 14 => (1,1)
0003 17 => (2,2)

很明显,内置的DB_ROW_ID的确是在整个实例级别共享自增分配的,而不是每个表独享一个DB_ROW_ID序列

我们可以想象下,如果一个实例中有多个表都用到这个DB_ROW_ID的话,势必会造成并发请求的竞争/等待。此外也可能会造成主从复制环境下,从库上relay log回放时可能会因为数据扫描机制的问题造成严重的复制延迟问题。详情参考 从库数据的查找和参数slave_rows_search_algorithms

优化建议4:自行显示定义可用的聚集索引/主键索引,不要让InnoDB选择内置的DB_ROW_ID作为聚集索引,避免潜在的性能损失

篇幅已经有点大了,本次的浅析工作就先到这里吧,以后再继续。

4、几点总结

最后针对InnoDB引擎表,总结几条建议吧。
  1. 每个表都要有显式主键,最好是自增整型,且没有业务用途
  2. 无论是主键索引,还是辅助索引,都尽可能选择数据类型较小的列
  3. 定义辅助索引时,没必要显式加上主键索引列(针对MySQL 5.6之后)
  4. 行数据越短越好,如果每个列都是固定长的则更好(不是像VARCHAR这样的可变长度类型)
上述测试环境基于Percona Server 5.7.22:
# MySQL的版本是Percona Server 5.7.22-22,我自己下载源码编译的
[root@yejr.me#] mysql -Smysql.sock innodb
...
Server version: 5.7.22-22-log Source distribution
...
[root@yejr.me]> \s
...
Server version:     5.7.22-22-log Source distribution
Enjoy MySQL :)

延伸阅读

  •  
  •  
  • MySQL Manual:Use of Index Extensions

  •  
  • jcole.us:The physical structure of InnoDB index pages

  • jcole.us:B+Tree index structures in InnoDB

  • jcole.us:How does InnoDB behave without a Primary Key?


最后,欢迎扫码订阅《乱弹MySQL》专栏,快人一步获取我最新的MySQL技术分享

MySQL 相关文章推荐
MySQL复制问题的三个参数分析
Apr 07 MySQL
JDBC连接的六步实例代码(与mysql连接)
May 12 MySQL
浅谈mysql返回Boolean类型的几种情况
Jun 04 MySQL
MySQL开启事务的方式
Jun 26 MySQL
MySQL图形化管理工具Navicat安装步骤
Dec 04 MySQL
mysql聚集索引、辅助索引、覆盖索引、联合索引的使用
Feb 12 MySQL
解决MySQL添加新用户-ERROR 1045 (28000)的问题
Mar 03 MySQL
MySQL中优化SQL语句的方法(show status、explain分析服务器状态信息)
Apr 09 MySQL
排查MySQL生产环境索引没有效果
Apr 11 MySQL
MySQL创建管理RANGE分区
Apr 13 MySQL
mysql数据库实现设置字段长度
Jun 10 MySQL
面试官问我Mysql的存储引擎了解多少
Aug 05 MySQL
MySQL基础(一)
Apr 05 #MySQL
MySQL基础(二)
MySQL学习总结-基础架构概述
MySQL锁机制
MySQL令人咋舌的隐式转换
Apr 05 #MySQL
mysql知识点整理
Apr 05 #MySQL
MySQL入门命令之函数-单行函数-流程控制函数
Apr 05 #MySQL
You might like
曾在DC漫画界反派角色扮演的演员,谁才是你心目中的小丑之王?
2020/04/09 欧美动漫
php header()函数使用说明
2008/07/10 PHP
执行、获取远程代码返回:file_get_contents 超时处理的问题详解
2013/06/25 PHP
jQuery+PHP+ajax实现微博加载更多内容列表功能
2014/06/27 PHP
PHP实现的mysql读写分离操作示例
2018/05/22 PHP
PHP后台备份MySQL数据库的源码实例
2019/03/18 PHP
2020最新版 PhpStudy V8.1版本下载安装使用详解
2020/10/30 PHP
在b/s开发中经常用到的javaScript技术
2006/08/23 Javascript
jquery validate.js表单验证的基本用法入门
2010/05/13 Javascript
JQuery 返回布尔值Is()条件判断方法代码
2012/05/14 Javascript
判断浏览器的内核及版本号方法汇总
2015/01/05 Javascript
JavaScript设计模式之工厂模式和构造器模式
2015/02/11 Javascript
angular2倒计时组件使用详解
2017/01/12 Javascript
Angular 4.x 动态创建表单实例
2017/04/25 Javascript
jQuery的时间datetime控件在AngularJs中的使用实例(分享)
2017/08/17 jQuery
微信小程序实现顶部选项卡(swiper)
2020/06/19 Javascript
nodejs实现截取上传视频中一帧作为预览图片
2017/12/10 NodeJs
深入讲解Python中的迭代器和生成器
2015/10/26 Python
讲解Python的Scrapy爬虫框架使用代理进行采集的方法
2016/02/18 Python
Python实现SMTP发送邮件详细教程
2021/03/02 Python
Python2.7编程中SQLite3基本操作方法示例
2017/08/09 Python
Selenium鼠标与键盘事件常用操作方法示例
2018/08/13 Python
python web自制框架之接受url传递过来的参数实例
2018/12/17 Python
Python谱减法语音降噪实例
2019/12/18 Python
Python +Selenium解决图片验证码登录或注册问题(推荐)
2020/02/09 Python
Python叠加矩形框图层2种方法及效果
2020/06/18 Python
使用Python获取爱奇艺电视剧弹幕数据的示例代码
2021/01/12 Python
python编写扎金花小程序的实例代码
2021/02/23 Python
GNC健安喜官方海外旗舰店:美国著名保健品牌
2017/01/04 全球购物
软件测试笔试题
2012/10/25 面试题
助学感谢信范文
2015/01/21 职场文书
500字小学生检讨书
2015/02/19 职场文书
《狮子和鹿》教学反思
2016/02/16 职场文书
2016年八一建军节活动总结
2016/04/05 职场文书
关于Python使用turtle库画任意图的问题
2022/04/01 Python
Windows server 2012 NTP时间同步的实现
2022/06/25 Servers