Python卷积神经网络图片分类框架详解分析


Posted in Python onNovember 07, 2021

【人工智能项目】卷积神经网络图片分类框架

Python卷积神经网络图片分类框架详解分析


本次硬核分享当时做图片分类的工作,主要是整理了一个图片分类的框架,如果想换模型,引入新模型,在config中修改即可。那么走起来瓷!!!

Python卷积神经网络图片分类框架详解分析

整体结构

Python卷积神经网络图片分类框架详解分析

config

在config文件夹下的config.py中主要定义数据集的位置,训练轮数,batch_size以及本次选用的模型。

# 定义训练集和测试集的路径
train_data_path = "./data/train/"
train_anno_path = "./data/train.csv"
test_data_path = "./data/test/"
# 定义多线程
num_workers = 8
# 定义batch_size大小
batch_size = 8

# 定义训练轮数
epochs = 20
# 定义k折交叉验证
k = 5
# 定义模型选择
# inception_v3_google inceptionv4
# vgg16
# resnet50 resnet101 resnet152 resnext50_32x4d resnext101_32x8d wide_resnet50_2  wide_resnet101_2
# senet154 se_resnet50 se_resnet101  se_resnet152  se_resnext50_32x4d  se_resnext101_32x4d
# nasnetalarge  pnasnet5large
# densenet121 densenet161 densenet169 densenet201
# efficientnet-b0 efficientnet-b1 efficientnet-b2 efficientnet-b3 efficientnet-b4 efficientnet-b5 efficientnet-b6 efficientnet-b7
# xception
# squeezenet1_0 squeezenet1_1
# mobilenet_v2
# mnasnet0_5 mnasnet0_75 mnasnet1_0 mnasnet1_3
# shufflenet_v2_x0_5 shufflenet_v2_x1_0
model_name = "vgg16"

# 定义分类类别
num_classes = 102
# 定义图片尺寸
img_width = 320
img_height = 320

data

data文件夹存放了train和test图片信息。

Python卷积神经网络图片分类框架详解分析


在train.csv中的存放图片名称以及对应的标签

Python卷积神经网络图片分类框架详解分析

dataloader

dataloader里面主要有data.py和data_augmentation.py文件。其中一个用于读取数据,另外一个用于数据增强操作。

import torch
from PIL import Image
from torch.utils.data.dataset import Dataset
import numpy as np
import PIL
from torchvision import transforms
from config import config
import  os
import cv2
# 定义DataSet和Transform


# 将df转换成标准的numpy array形式
def get_anno(path, images_path):
    data = []
    with open(path) as f:
        for line in f:
            idx, label = line.strip().split(',')
            data.append((os.path.join(images_path, idx), int(label)))
    return np.array(data)

# 定义读取trainData,读取df文件
# 通过df的idx,来获取image_path和label
class trainDataset(Dataset):
    def __init__(self, data, transform=None):
        self.data = data
        self.transform = transform

    def __getitem__(self, idx):
        img_path, label = self.data[idx]
        img = Image.open(img_path).convert('RGB')
        #img = cv2.imread(img_path)
        #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        if self.transform is not None:
            img = self.transform(img)
        return img, int(label)

    def __len__(self):
        return len(self.data)



# 通过文件路径来读取测试图片
class testDataset(Dataset):
    def __init__(self, img_path, transform=None):
        self.img_path = img_path
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')
        # img = cv2.imread(self.img_path[index])
        # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        if self.transform is not None:
            img = self.transform(img)
        return img

    def __len__(self):
        return len(self.img_path)


# train_transform = transforms.Compose([
#     transforms.Resize([config.img_width, config.img_height]),
#     transforms.RandomRotation(10),
#     transforms.ColorJitter(brightness=0.3, contrast=0.2),
#     transforms.RandomHorizontalFlip(),
#     transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
#     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# ])

train_transform = transforms.Compose([
    transforms.Pad(4, padding_mode='reflect'),
    transforms.RandomRotation(10),
    transforms.RandomResizedCrop([config.img_width, config.img_height]),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

val_transform = transforms.Compose([
    transforms.RandomResizedCrop([config.img_width, config.img_height]),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

test_transform = transforms.Compose([
    transforms.RandomResizedCrop([config.img_width, config.img_height]),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
import random

from __future__ import division
import cv2
import numpy as np
from numpy import random
import math
from sklearn.utils import shuffle

# 固定角度随机旋转
class FixedRotation(object):
    def __init__(self, angles):
        self.angles = angles

    def __call__(self, img):
        return fixed_rotate(img, self.angles)


def fixed_rotate(img, angles):
    angles = list(angles)
    angles_num = len(angles)
    index = random.randint(0, angles_num - 1)
    return img.rotate(angles[index])



__all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop',"RandomErasing",
           'BottomCrop', 'Normalize', 'RandomSwapChannels', 'RandomRotate', 'RandomHShift',"CenterCrop","RandomVflip",
           'ExpandBorder', 'RandomResizedCrop','RandomDownCrop', 'DownCrop', 'ResizedCrop',"FixRandomRotate"]

def rotate_nobound(image, angle, center=None, scale=1.):
    (h, w) = image.shape[:2]


    # if the center is None, initialize it as the center of
    # the image
    if center is None:
        center = (w // 2, h // 2)

    # perform the rotation
    M = cv2.getRotationMatrix2D(center, angle, scale)
    rotated = cv2.warpAffine(image, M, (w, h))

    return rotated

def scale_down(src_size, size):
    w, h = size
    sw, sh = src_size
    if sh < h:
        w, h = float(w * sh) / h, sh
    if sw < w:
        w, h = sw, float(h * sw) / w
    return int(w), int(h)


def fixed_crop(src, x0, y0, w, h, size=None):
    out = src[y0:y0 + h, x0:x0 + w]
    if size is not None and (w, h) != size:
        out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
    return out

class FixRandomRotate(object):
    def __init__(self, angles=[0,90,180,270], bound=False):
        self.angles = angles
        self.bound = bound

    def __call__(self,img):
        do_rotate = random.randint(0, 4)
        angle=self.angles[do_rotate]
        if self.bound:
            img = rotate_bound(img, angle)
        else:
            img = rotate_nobound(img, angle)
        return img

def center_crop(src, size):
    h, w = src.shape[0:2]
    new_w, new_h = scale_down((w, h), size)

    x0 = int((w - new_w) / 2)
    y0 = int((h - new_h) / 2)

    out = fixed_crop(src, x0, y0, new_w, new_h, size)
    return out


def bottom_crop(src, size):
    h, w = src.shape[0:2]
    new_w, new_h = scale_down((w, h), size)

    x0 = int((w - new_w) / 2)
    y0 = int((h - new_h) * 0.75)

    out = fixed_crop(src, x0, y0, new_w, new_h, size)
    return out

def rotate_bound(image, angle):
    # grab the dimensions of the image and then determine the
    # center
    h, w = image.shape[:2]

    (cX, cY) = (w // 2, h // 2)

    M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
    cos = np.abs(M[0, 0])
    sin = np.abs(M[0, 1])

    # compute the new bounding dimensions of the image
    nW = int((h * sin) + (w * cos))
    nH = int((h * cos) + (w * sin))

    # adjust the rotation matrix to take into account translation
    M[0, 2] += (nW / 2) - cX
    M[1, 2] += (nH / 2) - cY

    rotated = cv2.warpAffine(image, M, (nW, nH))

    return rotated


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms
    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img
class RandomRotate(object):
    def __init__(self, angles, bound=False):
        self.angles = angles
        self.bound = bound

    def __call__(self,img):
        do_rotate = random.randint(0, 2)
        if do_rotate:
            angle = np.random.uniform(self.angles[0], self.angles[1])
            if self.bound:
                img = rotate_bound(img, angle)
            else:
                img = rotate_nobound(img, angle)
        return img
class RandomBrightness(object):
    def __init__(self, delta=10):
        assert delta >= 0
        assert delta <= 255
        self.delta = delta

    def __call__(self, image):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image = (image + delta).clip(0.0, 255.0)
            # print('RandomBrightness,delta ',delta)
        return image


class RandomContrast(object):
    def __init__(self, lower=0.9, upper=1.05):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    # expects float image
    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            # print('contrast:', alpha)
            image = (image * alpha).clip(0.0,255.0)
        return image


class RandomSaturation(object):
    def __init__(self, lower=0.8, upper=1.2):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image[:, :, 1] *= alpha
            # print('RandomSaturation,alpha',alpha)
        return image


class RandomHue(object):
    def __init__(self, delta=18.0):
        assert delta >= 0.0 and delta <= 360.0
        self.delta = delta

    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(-self.delta, self.delta)
            image[:, :, 0] += alpha
            image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
            image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
            # print('RandomHue,alpha:', alpha)
        return image


class ConvertColor(object):
    def __init__(self, current='BGR', transform='HSV'):
        self.transform = transform
        self.current = current

    def __call__(self, image):
        if self.current == 'BGR' and self.transform == 'HSV':
            image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        elif self.current == 'HSV' and self.transform == 'BGR':
            image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
        else:
            raise NotImplementedError
        return image

class RandomSwapChannels(object):
    def __call__(self, img):
        if np.random.randint(2):
            order = np.random.permutation(3)
            return img[:,:,order]
        return img

class RandomCrop(object):
    def __init__(self, size):
        self.size = size
    def __call__(self, image):
        h, w, _ = image.shape
        new_w, new_h = scale_down((w, h), self.size)

        if w == new_w:
            x0 = 0
        else:
            x0 = random.randint(0, w - new_w)

        if h == new_h:
            y0 = 0
        else:
            y0 = random.randint(0, h - new_h)

        out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
        return out



class RandomResizedCrop(object):
    def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio

    def __call__(self,img):
        if random.random() < 0.2:
            return cv2.resize(img,self.size)
        h, w, _ = img.shape
        area = h * w
        d=1
        for attempt in range(10):
            target_area = random.uniform(self.scale[0], self.scale[1]) * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])


            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                new_h, new_w = new_w, new_h

            if new_w < w and new_h < h:
                x0 = random.randint(0, w - new_w)
                y0 = (random.randint(0, h - new_h))//d
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

                return out

        # Fallback
        return center_crop(img, self.size)


class DownCrop():
    def __init__(self, size,  select, scale=(0.36,0.81)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        if attr_idx == 0:
            self.scale=(0.64,1.0)
        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/2.0

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            x0 = int(0.5*dw)
            y0 = h-new_h
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out, attr_idx

        # Fallback
        return center_crop(img, self.size), attr_idx


class ResizedCrop(object):
    def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        h, w, _ = img.shape
        area = h * w
        d=1
        if attr_idx == 2:
            self.scale=(0.36,0.81)
            d=2
        if attr_idx == 0:
            self.scale=(0.81,1.0)

        target_area = (self.scale[0]+self.scale[1])/2.0 * area
        # aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])


        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        # if random.random() < 0.5:
        #     new_h, new_w = new_w, new_h

        if new_w < w and new_h < h:
            x0 =  (w - new_w)//2
            y0 = (h - new_h)//d//2
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
            # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
            #
            # cv2.waitKey(0)
            return out, attr_idx

        # Fallback
        return center_crop(img, self.size), attr_idx

class RandomHflip(object):
    def __call__(self, image):
        if random.randint(2):
            return cv2.flip(image, 1)
        else:
            return image
class RandomVflip(object):
    def __call__(self, image):
        if random.randint(2):
            return cv2.flip(image, 0)
        else:
            return image


class Hflip(object):
    def __init__(self,doHflip):
        self.doHflip = doHflip

    def __call__(self, image):
        if self.doHflip:
            return cv2.flip(image, 1)
        else:
            return image


class CenterCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image):
        return center_crop(image, self.size)

class UpperCrop():
    def __init__(self, size, scale=(0.09, 0.64)):
        self.size = size
        self.scale = scale

    def __call__(self,img):
        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/2.0

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            x0 = int(0.5*dw)
            y0 = 0
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out

        # Fallback
        return center_crop(img, self.size)



class RandomUpperCrop(object):
    def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if random.random() < 0.2:
            return img, attr_idx
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))


            # new_w = int(round(math.sqrt(target_area)))
            # new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                y0 = (random.randint(0, h - new_h))//10
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                return out, attr_idx

        # Fallback
        return center_crop(img, self.size), attr_idx
class RandomDownCrop(object):
    def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if random.random() < 0.2:
            return img, attr_idx
        if attr_idx not in self.select:
            return img, attr_idx
        if attr_idx == 0:
            self.scale=(0.64,1.0)

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))
            #
            # new_w = int(round(math.sqrt(target_area)))
            # new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                y0 = (random.randint((h - new_h)*9//10, h - new_h))
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

                # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
                # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
                #
                # cv2.waitKey(0)

                return out, attr_idx

        # Fallback
        return center_crop(img, self.size), attr_idx

class RandomHShift(object):
    def __init__(self, select, scale=(0.0, 0.2)):
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        do_shift_crop = random.randint(0, 2)
        if do_shift_crop:
            h, w, _ = img.shape
            min_shift = int(w*self.scale[0])
            max_shift = int(w*self.scale[1])
            shift_idx = random.randint(min_shift, max_shift)
            direction = random.randint(0,2)
            if direction:
                right_part = img[:, -shift_idx:, :]
                left_part = img[:, :-shift_idx, :]
            else:
                left_part = img[:, :shift_idx, :]
                right_part = img[:, shift_idx:, :]
            img = np.concatenate((right_part, left_part), axis=1)

        # Fallback
        return img, attr_idx


class RandomBottomCrop(object):
    def __init__(self, size, select, scale=(0.4, 0.8)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area

            new_w = int(round(math.sqrt(target_area)))
            new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                dh = h - new_h
                x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
                y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                return out, attr_idx

        # Fallback
        return bottom_crop(img, self.size), attr_idx


class BottomCrop():
    def __init__(self, size,  select, scale=(0.4, 0.8)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/3.*2.

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            dh = h-new_h
            x0 = int(0.5*dw)
            y0 = int(0.9*dh)
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out, attr_idx

        # Fallback
        return bottom_crop(img, self.size), attr_idx



class Resize(object):
    def __init__(self, size, inter=cv2.INTER_CUBIC):
        self.size = size
        self.inter = inter

    def __call__(self, image):
        return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)

class ExpandBorder(object):
    def __init__(self,  mode='constant', value=255, size=(336,336), resize=False):
        self.mode = mode
        self.value = value
        self.resize = resize
        self.size = size

    def __call__(self, image):
        h, w, _ = image.shape
        if h > w:
            pad1 = (h-w)//2
            pad2 = h - w - pad1
            if self.mode == 'constant':
                image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
                               self.mode, constant_values=self.value)
            else:
                image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
        elif h < w:
            pad1 = (w-h)//2
            pad2 = w-h - pad1
            if self.mode == 'constant':
                image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
                               self.mode,constant_values=self.value)
            else:
                image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
        if self.resize:
            image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
        return image
class AstypeToInt():
    def __call__(self, image, attr_idx):
        return image.clip(0,255.0).astype(np.uint8), attr_idx

class AstypeToFloat():
    def __call__(self, image, attr_idx):
        return image.astype(np.float32), attr_idx

import matplotlib.pyplot as plt
class Normalize(object):
    def __init__(self,mean, std):
        '''
        :param mean: RGB order
        :param std:  RGB order
        '''
        self.mean = np.array(mean).reshape(3,1,1)
        self.std = np.array(std).reshape(3,1,1)
    def __call__(self, image):
        '''
        :param image:  (H,W,3)  RGB
        :return:
        '''
        # plt.figure(1)
        # plt.imshow(image)
        # plt.show()
        return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std

class RandomErasing(object):
    def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
        self.EPSILON = EPSILON
        self.mean = mean
        self.sl = sl
        self.sh = sh
        self.r1 = r1
        self.select = select

    def __call__(self, img,attr_idx):
        if attr_idx not in self.select:
            return img,attr_idx

        if random.uniform(0, 1) > self.EPSILON:
            return img,attr_idx

        for attempt in range(100):
            area = img.shape[1] * img.shape[2]

            target_area = random.uniform(self.sl, self.sh) * area
            aspect_ratio = random.uniform(self.r1, 1 / self.r1)

            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.shape[2] and h <= img.shape[1]:
                x1 = random.randint(0, img.shape[1] - h)
                y1 = random.randint(0, img.shape[2] - w)
                if img.shape[0] == 3:
                    # img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    # img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    # img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
                    img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
                    img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
                    # img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
                else:
                    img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
                    # img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
                return img,attr_idx

        return img,attr_idx

# if __name__ == '__main__':
#     import matplotlib.pyplot as plt
#
#
#     class FSAug(object):
#         def __init__(self):
#             self.augment = Compose([
#                 AstypeToFloat(),
#                 # RandomHShift(scale=(0.,0.2),select=range(8)),
#                 # RandomRotate(angles=(-20., 20.), bound=True),
#                 ExpandBorder(select=range(8), mode='symmetric'),# symmetric
#                 # Resize(size=(336, 336), select=[ 2, 7]),
#                 AstypeToInt()
#             ])
#
#         def __call__(self, spct,attr_idx):
#             return self.augment(spct,attr_idx)
#
#
#     trans = FSAug()
#
#     img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
#     img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB)
#     img_trans,_ = trans(img,5)
#     # img_trans2,_ = trans(img,6)
#     print img_trans.max(), img_trans.min()
#     print img_trans.dtype
#
#     plt.figure()
#     plt.subplot(221)
#     plt.imshow(img)
#
#     plt.subplot(222)
#     plt.imshow(img_trans)
#
#     # plt.subplot(223)
#     # plt.imshow(img_trans2)
#     # plt.imshow(img_trans2)
#     plt.show()

factory

factory里面主要定义了一些学习率,损失函数,优化器等之类的。

Python卷积神经网络图片分类框架详解分析

models

models中主要定义了常见的分类模型。

Python卷积神经网络图片分类框架详解分析

train.py

import os
from sklearn.model_selection import KFold
from torchvision import transforms
import torch.utils.data
from dataloader.data import trainDataset,train_transform,val_transform,get_anno
from factory.loss import *
from models.model import Model
from config import config
import numpy as np
from utils import utils
from factory.LabelSmoothing import LSR


def train(model_type, prefix):
    # df -> numpy.array()形式
    data = get_anno(config.train_anno_path, config.train_data_path)
    # 5折交叉验证
    skf = KFold(n_splits=config.k, random_state=233, shuffle=True)

    for flod_idx, (train_indices, val_indices) in enumerate(skf.split(data)):
        train_loader = torch.utils.data.DataLoader(
            trainDataset(data[train_indices],
                         train_transform),
            batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True
        )

        val_loader = torch.utils.data.DataLoader(
            trainDataset(data[val_indices],
                         val_transform),
            batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=True
        )

        #criterion = FocalLoss(0.5)
        criterion = LSR()
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        model = Model(model_type, config.num_classes, criterion, device=device, prefix=prefix, suffix=str(flod_idx))

        for epoch in range(config.epochs):
            print('Epoch: ', epoch)

            model.fit(train_loader)
            model.validate(val_loader)


if __name__ == '__main__':
    model_type_list = [config.model_name]
    for model_type in model_type_list:
        train(model_type, "resize")

小结

本次主要给出一个图片分类的框架,方便快速的切换模型。
那下回见!!!欢迎大家多多点赞评论呀!!!

Python卷积神经网络图片分类框架详解分析

到此这篇关于Python卷积神经网络图片分类框架详解分析的文章就介绍到这了,更多相关Python 卷积神经网络内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Django查找网站项目根目录和对正则表达式的支持
Jul 15 Python
python虚拟环境virtualenv的安装与使用
Sep 21 Python
kaggle+mnist实现手写字体识别
Jul 26 Python
Python3.5基础之NumPy模块的使用图文与实例详解
Apr 24 Python
python3发送邮件需要经过代理服务器的示例代码
Jul 25 Python
Python paramiko模块使用解析(实现ssh)
Aug 30 Python
Python3常见函数range()用法详解
Dec 30 Python
Python JSON编解码方式原理详解
Jan 20 Python
Python基于codecs模块实现文件读写案例解析
May 11 Python
在pycharm中创建django项目的示例代码
May 28 Python
Django restful framework生成API文档过程详解
Nov 12 Python
Pandas中两个dataframe的交集和差集的示例代码
Dec 13 Python
Python人工智能之混合高斯模型运动目标检测详解分析
7个关于Python的经典基础案例
Nov 07 #Python
python机器学习创建基于规则聊天机器人过程示例详解
Python中Numpy和Matplotlib的基本使用指南
python模块与C和C++动态库相互调用实现过程示例
Nov 02 #Python
Qt自定义Plot实现曲线绘制的详细过程
Nov 02 #Python
Python 正则模块详情
Nov 02 #Python
You might like
转生史莱姆:萌王第一次撸串开心到飞起,哥布塔撸串却神似界王神
2018/11/30 日漫
libmysql.dll与php.ini是否真的要拷贝到c:\windows目录下呢
2010/03/15 PHP
ThinkPHP表单自动验证实例
2014/10/13 PHP
PHPStrom中实用的功能和快捷键大全
2015/09/23 PHP
layui数据表格自定义每页条数limit设置
2019/10/26 PHP
使用CSS3实现字体颜色渐变的实现
2021/03/09 HTML / CSS
JS正则验证邮箱的格式详细介绍
2013/11/19 Javascript
JSON中双引号的轮回使用过程中一定要小心
2014/03/05 Javascript
基于JavaScript实现快速转换文本语言(繁体中文和简体中文)
2016/03/07 Javascript
原生js获取iframe中dom元素--父子页面相互获取对方dom元素的方法
2016/08/05 Javascript
运用js教你轻松制作html音乐播放器
2020/04/17 Javascript
原生js实现弹出层登录拖拽功能
2016/12/05 Javascript
vue-router 权限控制的示例代码
2017/09/21 Javascript
解决npm安装Electron缓慢网络超时导致失败的问题
2018/02/06 Javascript
使用vue-cli webpack 快速搭建项目的代码
2018/11/21 Javascript
Vue+ElementUI项目使用webpack输出MPA的方法
2019/08/27 Javascript
Javascript地址引用代码实例解析
2020/02/25 Javascript
vue v-model的用法解析
2020/10/19 Javascript
详解Vue中的watch和computed
2020/11/09 Javascript
微信小程序实现多张图片上传功能
2020/11/18 Javascript
jquery实现淡入淡出轮播图效果
2020/12/13 jQuery
python创建只读属性对象的方法(ReadOnlyObject)
2013/02/10 Python
python2.7删除文件夹和删除文件代码实例
2013/12/18 Python
忘记ftp密码使用python ftplib库暴力破解密码的方法示例
2014/01/22 Python
Python Web开发模板引擎优缺点总结
2014/05/06 Python
python自动化之Ansible的安装教程
2019/06/13 Python
python装饰器练习题及答案
2019/11/01 Python
Django filter动态过滤与排序实现过程解析
2020/11/26 Python
简述数组与指针的区别
2014/01/02 面试题
linux面试题参考答案(7)
2012/10/29 面试题
毕业生的自我评价
2013/12/30 职场文书
社区志愿者心得体会
2014/01/03 职场文书
大学毕业自我评价
2014/02/02 职场文书
入党积极分子批评与自我批评思想汇报
2014/09/14 职场文书
2015入党自传格式范文
2015/06/26 职场文书
python函数指定默认值的实例讲解
2021/03/29 Python