python实现高效的遗传算法


Posted in Python onApril 07, 2021

遗传算法属于一种优化算法。

如果你有一个待优化函数,可以考虑次算法。假设你有一个变量x,通过某个函数可以求出对应的y,那么你通过预设的x可求出y_pred,y_pred差距与你需要的y当然越接近越好,这就需要引入适应度(fitness)的概念。假设

fitness = 1/(1+ads(y_pred - y)),那么误差越小,适应度越大,即该个体越易于存活。

设计该算法的思路如下:

(1)初始化种群,即在我需要的区间如[-100,100]内random一堆初始个体[x1,x2,x3...],这些个体是10进制形式的,为了后面的交叉与变异我们不妨将其转化为二进制形式。那么现在的问题是二进制取多少位合适呢?即编码(code)的长度是多少呢?

这就涉及一些信号方面的知识,比如两位的二进制表示的最大值是3(11),可以将区间化为4分,那么每一份区间range长度range/4,我们只需要让range/n小于我们定义的精度即可。n是二进制需要表示的最大,可以反解出二进制位数 。

(2)我们需要编写编码与解码函数。即code:将x1,x2...化为二进制,decode:在交叉变异后重新得到十进制数,用于计算fitness。

(3)交叉后变异函数编写都很简单,random一个point,指定两个x在point位置进行切片交换即是交叉。变异也是random一个point,让其值0变为1,1变为0。

(4)得到交叉变异后的个体,需要计算fitness进行种群淘汰,保留fitness最高的一部分种群。

(5)将最优的个体继续上面的操作,直到你定义的iteration结束为止。

不说了,上代码:

import numpy as np
import pandas as pd
import random
from scipy.optimize import fsolve
import matplotlib.pyplot as plt
import heapq
from sklearn.model_selection import train_test_split
from tkinter import _flatten
from sklearn.utils import shuffle
from sklearn import preprocessing
from sklearn.decomposition import PCA
from matplotlib import rcParams
 
 
 
# 求染色体长度
def getEncodeLength(decisionvariables, delta):
 # 将每个变量的编码长度放入数组
 lengths = []
 for decisionvar in decisionvariables:
  uper = decisionvar[1]
  low = decisionvar[0]
  # res()返回一个数组
  res = fsolve(lambda x: ((uper - low) / delta - 2 ** x + 1), 30)
  # ceil()向上取整
  length = int(np.ceil(res[0]))
  lengths.append(length)
 # print("染色体长度:", lengths)
 return lengths
 
 
# 随机生成初始化种群
def getinitialPopulation(length, populationSize):
 chromsomes = np.zeros((populationSize, length), dtype=np.int)
 for popusize in range(populationSize):
  # np.random.randit()产生[0,2)之间的随机整数,第三个参数表示随机数的数量
  chromsomes[popusize, :] = np.random.randint(0, 2, length)
 return chromsomes
 
 
# 染色体解码得到表现形的解
def getDecode(population, encodelength, decisionvariables, delta):
 # 得到population中有几个元素
 populationsize = population.shape[0]
 length = len(encodelength)
 decodeVariables = np.zeros((populationsize, length), dtype=np.float)
 # 将染色体拆分添加到解码数组decodeVariables中
 for i, populationchild in enumerate(population):
  # 设置起始点
  start = 0 
  for j, lengthchild in enumerate(encodelength):
   power = lengthchild - 1
   decimal = 0
   start_end = start + lengthchild
   for k in range(start, start_end):
    # 二进制转为十进制
    decimal += populationchild[k] * (2 ** power)
    power = power - 1
   # 从下一个染色体开始
   start = start_end
   lower = decisionvariables[j][0]
   uper = decisionvariables[j][1]
   # 转换为表现形
   decodevalue = lower + decimal * (uper - lower) / (2 ** lengthchild - 1)
   # 将解添加到数组中
   decodeVariables[i][j] = decodevalue
   
 return decodeVariables
 
 
# 选择新的种群
def selectNewPopulation(decodepopu, cum_probability):
 # 获取种群的规模和
 m, n = decodepopu.shape
 # 初始化新种群
 newPopulation = np.zeros((m, n))
 for i in range(m):
  # 产生一个0到1之间的随机数
  randomnum = np.random.random()
  # 轮盘赌选择
  for j in range(m):
   if (randomnum < cum_probability[j]):
    newPopulation[i] = decodepopu[j]
    break
 return newPopulation
 
 
# 新种群交叉
def crossNewPopulation(newpopu, prob):
 m, n = newpopu.shape
 # uint8将数值转换为无符号整型
 numbers = np.uint8(m * prob)
 # 如果选择的交叉数量为奇数,则数量加1
 if numbers % 2 != 0:
  numbers = numbers + 1
 # 初始化新的交叉种群
 updatepopulation = np.zeros((m, n), dtype=np.uint8)
 # 随机生成需要交叉的染色体的索引号
 index = random.sample(range(m), numbers)
 # 不需要交叉的染色体直接复制到新的种群中
 for i in range(m):
  if not index.__contains__(i):
   updatepopulation[i] = newpopu[i]
 # 交叉操作
 j = 0
 while j < numbers:
  # 随机生成一个交叉点,np.random.randint()返回的是一个列表
  crosspoint = np.random.randint(0, n, 1)
  crossPoint = crosspoint[0]
  # a = index[j]
  # b = index[j+1]
  updatepopulation[index[j]][0:crossPoint] = newpopu[index[j]][0:crossPoint]
  updatepopulation[index[j]][crossPoint:] = newpopu[index[j + 1]][crossPoint:]
  updatepopulation[index[j + 1]][0:crossPoint] = newpopu[j + 1][0:crossPoint]
  updatepopulation[index[j + 1]][crossPoint:] = newpopu[index[j]][crossPoint:]
  j = j + 2
 return updatepopulation
 
 
# 变异操作
def mutation(crosspopulation, mutaprob):
 # 初始化变异种群
 mutationpopu = np.copy(crosspopulation)
 m, n = crosspopulation.shape
 # 计算需要变异的基因数量
 mutationnums = np.uint8(m * n * mutaprob)
 # 随机生成变异基因的位置
 mutationindex = random.sample(range(m * n), mutationnums)
 # 变异操作
 for geneindex in mutationindex:
  # np.floor()向下取整返回的是float型
  row = np.uint8(np.floor(geneindex / n))
  colume = geneindex % n
  if mutationpopu[row][colume] == 0:
   mutationpopu[row][colume] = 1
  else:
   mutationpopu[row][colume] = 0
 return mutationpopu
 
 
# 找到重新生成的种群中适应度值最大的染色体生成新种群
def findMaxPopulation(population, maxevaluation, maxSize):
 #将数组转换为列表
 #maxevalue = maxevaluation.flatten()
 maxevaluelist = maxevaluation
 # 找到前100个适应度最大的染色体的索引
 maxIndex = map(maxevaluelist.index, heapq.nlargest(maxSize, maxevaluelist))
 index = list(maxIndex)
 colume = population.shape[1]
 # 根据索引生成新的种群
 maxPopulation = np.zeros((maxSize, colume))
 i = 0
 for ind in index:
  maxPopulation[i] = population[ind]
  i = i + 1
 return maxPopulation
 
 
 
# 得到每个个体的适应度值及累计概率
def getFitnessValue(decode,x_train,y_train):
 # 得到种群的规模和决策变量的个数
 popusize, decisionvar = decode.shape
 
 fitnessValue = []
 for j in range(len(decode)):
  W1 = decode[j][0:20].reshape(4,5)
  V1 = decode[j][20:25].T
  W2 = decode[j][25:45].reshape(5,4)
  V2 = decode[j][45:].T
  error_all = []
  for i in range(len(x_train)):
   #get values of hidde layer
   X2 = sigmoid(x_train[i].T.dot(W1)+V1)
   #get values of prediction y
   Y_hat = sigmoid(X2.T.dot(W2)+V2)
   #get error when input dimension is i
   error = sum(abs(Y_hat - y_train[i]))
   error_all.append(error)
 
  #get fitness when W and V is j
  fitnessValue.append(1/(1+sum(error_all)))
 
 # 得到每个个体被选择的概率
 probability = fitnessValue / np.sum(fitnessValue)
 # 得到每个染色体被选中的累积概率,用于轮盘赌算子使用
 cum_probability = np.cumsum(probability)
 return fitnessValue, cum_probability
 
 
 
def getFitnessValue_accuracy(decode,x_train,y_train):
 # 得到种群的规模和决策变量的个数
 popusize, decisionvar = decode.shape
 
 fitnessValue = []
 for j in range(len(decode)):
  W1 = decode[j][0:20].reshape(4,5)
  V1 = decode[j][20:25].T
  W2 = decode[j][25:45].reshape(5,4)
  V2 = decode[j][45:].T
  accuracy = []
  for i in range(len(x_train)):
   #get values of hidde layer
   X2 = sigmoid(x_train[i].T.dot(W1)+V1)
   #get values of prediction y
   Y_hat = sigmoid(X2.T.dot(W2)+V2)
   #get error when input dimension is i
   accuracy.append(sum(abs(np.round(Y_hat) - y_train[i])))
  fitnessValue.append(sum([m == 0 for m in accuracy])/len(accuracy))
 # 得到每个个体被选择的概率
 probability = fitnessValue / np.sum(fitnessValue)
 # 得到每个染色体被选中的累积概率,用于轮盘赌算子使用
 cum_probability = np.cumsum(probability)
 return fitnessValue, cum_probability
 
 
def getXY():
 # 要打开的文件名
 data_set = pd.read_csv('all-bp.csv', header=None)
 # 取出“特征”和“标签”,并做了转置,将列转置为行
 X_minMax1 = data_set.iloc[:, 0:12].values
 # 前12列是特征
 min_max_scaler = preprocessing.MinMaxScaler()
 X_minMax = min_max_scaler.fit_transform(X_minMax1) # 0-1 range
 transfer = PCA(n_components=0.9)
 data1 = transfer.fit_transform(X_minMax)
 #print('PCA processed shape:',data1.shape)
 X = data1
 Y = data_set.iloc[ : , 12:16].values # 后3列是标签
 
 # 分训练和测试集
 x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
 return x_train, x_test, y_train, y_test
 
 
def sigmoid(z):
 return 1 / (1 + np.exp(-z))

上面的计算适应度函数需要自己更具实际情况调整。

optimalvalue = []
optimalvariables = []
 
# 两个决策变量的上下界,多维数组之间必须加逗号
decisionVariables = [[-100,100]]*49
# 精度
delta = 0.001
# 获取染色体长度
EncodeLength = getEncodeLength(decisionVariables, delta)
# 种群数量
initialPopuSize = 100
# 初始生成100个种群,20,5,20,4分别对用W1,V1,W2,V2
population = getinitialPopulation(sum(EncodeLength), initialPopuSize)
print("polpupation.shape:",population.shape)
# 最大进化代数
maxgeneration = 4000
# 交叉概率
prob = 0.8
# 变异概率
mutationprob = 0.5
# 新生成的种群数量
maxPopuSize = 30
x_train, x_test, y_train, y_test = getXY()
 
 
for generation in range(maxgeneration):
 # 对种群解码得到表现形
 print(generation)
 decode = getDecode(population, EncodeLength, decisionVariables, delta)
 #print('the shape of decode:',decode.shape
 
 # 得到适应度值和累计概率值
 evaluation, cum_proba = getFitnessValue_accuracy(decode,x_train,y_train)
 # 选择新的种群
 newpopulations = selectNewPopulation(population, cum_proba)
 # 新种群交叉
 crossPopulations = crossNewPopulation(newpopulations, prob)
 # 变异操作
 mutationpopulation = mutation(crossPopulations, mutationprob)
 
 # 将父母和子女合并为新的种群
 totalpopulation = np.vstack((population, mutationpopulation))
 # 最终解码
 final_decode = getDecode(totalpopulation, EncodeLength, decisionVariables, delta)
 # 适应度评估
 final_evaluation, final_cumprob = getFitnessValue_accuracy(final_decode,x_train,y_train)
 #选出适应度最大的100个重新生成种群
 population = findMaxPopulation(totalpopulation, final_evaluation, maxPopuSize)
 
 # 找到本轮中适应度最大的值
 optimalvalue.append(np.max(final_evaluation))
 index = np.where(final_evaluation == max(final_evaluation))
 optimalvariables.append(list(final_decode[index[0][0]]))
fig = plt.figure(dpi = 160,figsize=(5,4)) 
config = {
"font.family":"serif", #serif
"font.size": 10,
"mathtext.fontset":'stix',
}
rcParams.update(config)
plt.plot(np.arange(len(optimalvalue)), optimalvalue, color="y", lw=0.8, ls='-', marker='o', ms=8)
# 图例设置
plt.xlabel('Iteration')
plt.ylabel('Accuracy')
plt.show()

python实现高效的遗传算法

以上就是python实现高效的遗传算法的详细内容,更多关于python遗传算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python笔记(2)
Oct 24 Python
scrapy自定义pipeline类实现将采集数据保存到mongodb的方法
Apr 16 Python
对python抓取需要登录网站数据的方法详解
May 21 Python
python浪漫表白源码
Apr 05 Python
Django项目中使用JWT的实现代码
Nov 04 Python
Python数据可视化:箱线图多种库画法
Nov 06 Python
Python 过滤错误log并导出的实例
Dec 26 Python
python mysql 字段与关键字冲突的解决方式
Mar 02 Python
python如何提取英语pdf内容并翻译
Mar 03 Python
python进行参数传递的方法
May 12 Python
Python基于pyjnius库实现访问java类
Jul 31 Python
PyCharm 配置SSH和SFTP连接远程服务器
May 11 Python
解决hive中导入text文件遇到的坑
Apr 07 #Python
python - asyncio异步编程
Apr 06 #Python
python - timeit 时间模块
Apr 06 #Python
python制作图形界面的2048游戏, 基于tkinter
python第三方网页解析器 lxml 扩展库与 xpath 的使用方法
Apr 06 #Python
python删除csv文件的行列
Apr 06 #Python
python使用pygame创建精灵Sprite
You might like
PHP设计聊天室步步通
2006/10/09 PHP
最省空间的计数器
2006/10/09 PHP
php2html php生成静态页函数
2008/12/08 PHP
PHP Session_Regenerate_ID函数双释放内存破坏漏洞
2011/01/27 PHP
过滤掉PHP数组中的重复值的实现代码
2011/07/17 PHP
Thinkphp中的volist标签用法简介
2014/06/18 PHP
基于laravel缓冲cache的用法详解
2019/10/23 PHP
Prototype Date对象 学习
2009/07/12 Javascript
JS实现悬浮移动窗口(悬浮广告)的特效
2013/03/12 Javascript
js获取时间并实现字符串和时间戳之间的转换
2015/01/05 Javascript
原生js和jquery实现图片轮播特效
2015/04/23 Javascript
Nodejs express框架一个工程中同时使用ejs模版和jade模版
2015/12/28 NodeJs
javascript事件的传播基础实例讲解(35)
2017/02/14 Javascript
前端开发之CSS原理详解
2017/03/11 Javascript
jQuery实现锚点向下平滑滚动特效示例
2017/08/29 jQuery
微信小程序视图template模板引用的实例详解
2017/09/20 Javascript
Vue绑定内联样式问题
2018/10/17 Javascript
小程序自定义单页面、全局导航栏的实现代码
2019/03/15 Javascript
如何在vue中使用百度地图添加自定义覆盖物(水波纹)
2020/11/03 Javascript
python创建线程示例
2014/05/06 Python
python字符串连接方式汇总
2014/08/21 Python
Python中字符串的处理技巧分享
2016/09/17 Python
Python基于QRCode实现生成二维码的方法【下载,安装,调用等】
2017/07/11 Python
python获取外网IP并发邮件的实现方法
2017/10/01 Python
Python开发网站目录扫描器的实现
2019/02/21 Python
python将图片转base64,实现前端显示
2020/01/09 Python
Scrapy框架基本命令与settings.py设置
2020/02/06 Python
Python使用qrcode二维码库生成二维码方法详解
2020/02/17 Python
学习python需要有编程基础吗
2020/06/02 Python
python3 通过 pybind11 使用Eigen加速代码的步骤详解
2020/12/07 Python
Html5与App的通讯方式详解
2019/10/24 HTML / CSS
会计专业自我鉴定范文
2013/12/29 职场文书
企业内控岗位的职责
2014/02/07 职场文书
党组织公开承诺书
2014/03/29 职场文书
2015年工商局个人工作总结
2015/07/23 职场文书
MySql子查询IN的执行和优化的实现
2021/08/02 MySQL