python绘图pyecharts+pandas的使用详解


Posted in Python onDecember 13, 2020

pyecharts介绍

pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒

为避免绘制缺漏,建议全部安装

为了避免下载缓慢,作者全部使用镜像源下载过了

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-provinces-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-cities-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-counties-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-misc-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-united-kingdom-pypkg

python绘图pyecharts+pandas的使用详解 

基础案例

from pyecharts.charts import Bar
bar = Bar()
bar.add_xaxis(['小嘉','小琪','大嘉琪','小嘉琪'])
bar.add_yaxis('得票数',[60,60,70,100])
#render会生成本地HTML文件,默认在当前目录生成render.html
# bar.render()
#可以传入路径参数,如 bar.render("mycharts.html")
#可以将图形在jupyter中输出,如 bar.render_notebook()
bar.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Bar
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

# 1.x版本支持链式调用
bar = (Bar()
    .add_xaxis(cate)
    .add_yaxis('渠道', data1)
    .add_yaxis('门店', data2)
    .set_global_opts(title_opts=opts.TitleOpts(title="示例", subtitle="副标"))
   )
bar.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Pie
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data = [153, 124, 107, 99, 89, 46]

pie = (Pie()
    .add('', [list(z) for z in zip(cate, data)],
      radius=["30%", "75%"],
      rosetype="radius")
    .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
   )

pie.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Line
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

"""
折线图示例:
1. is_smooth 折线 OR 平滑
2. markline_opts 标记线 OR 标记点
"""
line = (Line()
    .add_xaxis(cate)
    .add_yaxis('电商渠道', data1, 
         markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
    .add_yaxis('门店', data2, 
         is_smooth=True, 
         markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点", 
                                       coord=[cate[2], data2[2]], value=data2[2])]))
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题"))
   )

line.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
import random

province = ['福州市', '莆田市', '泉州市', '厦门市', '漳州市', '龙岩市', '三明市', '南平']
data = [(i, random.randint(200, 550)) for i in province]

geo = (Geo()
    .add_schema(maptype="福建")
    .add("门店数", data,
      type_=ChartType.HEATMAP)
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
      visualmap_opts=opts.VisualMapOpts(),
      legend_opts=opts.LegendOpts(is_show=False),
      title_opts=opts.TitleOpts(title="福建热力地图"))
   )

geo.render_notebook()

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

啊哈这个还访问不了哈

ImportError: Missing optional dependency ‘xlrd'. Install xlrd >= 1.0.0 for Excel support Use pip or conda to install xlrd.

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

20200822pyecharts+pandas 初步学习

作者今天学习做数据分析,有错误请指出
下面贴出源代码

# 获取数据
import requests
import json
china_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
#foreign_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_foreign'
headers = {
  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36 Edg/84.0.522.59',
  'referer': 'https://news.qq.com/zt2020/page/feiyan.htm'
}
#获取json数据
response = requests.get(url=china_url,headers=headers).json()

print(response)
#先将json数据转 python的字典
data = json.loads(response['data'])

#保存数据 这里使用encoding='utf-8' 是因为作者想在jupyter上面看
with open('./国内疫情.json','w',encoding='utf-8') as f:
  #再将python的字典转json数据
  # json默认中文以ASCII码显示 在这里我们以中文显示 所以False
  #indent=2:开头空格2 

  f.write(json.dumps(data,ensure_ascii=False,indent=2))

转换为json格式输出的文件

python绘图pyecharts+pandas的使用详解

# 将json数据转存到Excel中
import pandas as pd
#读取文件
with open('./国内疫情.json',encoding='utf-8') as f:
  data = f.read()
  
#将数据转为python数据格式
data = json.loads(data)
type(data)#字典类型
lastUpdateTime = data['lastUpdateTime']
#获取中国所有数据
chinaAreaDict = data['areaTree'][0]
#获取省级数据
provinceList = chinaAreaDict['children']
# 获取的数据有几个省市和地区
print('数据共有:',len(provinceList),'省市和地区')
#将中国数据按城市封装,例如【{湖北,武汉},{湖北,襄阳}】,为了方便放在dataframe中
china_citylist = []
for x in range(len(provinceList)):
  # 每一个省份的数据
  province =provinceList[x]['name']
  #有多少个市
  province_list = provinceList[x]['children']
  
  for y in range(len(province_list)):
    # 每一个市的数据
    city = province_list[y]['name']
    # 累积所有的数据
    total = province_list[y]['total']
    # 今日的数据
    today = province_list[y]['today']
    china_dict = {'省份':province,
           '城市':city,
           'total':total,
           'today':today
           }
    china_citylist.append(china_dict)


chinaTotaldata = pd.DataFrame(china_citylist)
nowconfirmlist=[]
confirmlist=[]
suspectlist=[]
deadlist=[]
heallist=[]
deadRatelist=[]
healRatelist=[]

# 将整体数据chinaTotaldata的数据添加dataframe
for value in chinaTotaldata['total'] .values.tolist():#转成列表
  confirmlist.append(value['confirm'])
  suspectlist.append(value['suspect'])
  deadlist.append(value['dead'])
  heallist.append(value['heal'])
  deadRatelist.append(value['deadRate'])
  healRatelist.append(value['healRate'])
  nowconfirmlist.append(value['nowConfirm'])
  
chinaTotaldata['现有确诊']=nowconfirmlist  
chinaTotaldata['累计确诊']=confirmlist
chinaTotaldata['疑似']=suspectlist
chinaTotaldata['死亡']=deadlist
chinaTotaldata['治愈']=heallist
chinaTotaldata['死亡率']=deadRatelist
chinaTotaldata['治愈率']=healRatelist

#拆分today列
today_confirmlist=[]
today_confirmCutlist=[]

for value in chinaTotaldata['today'].values.tolist():
  today_confirmlist.append(value['confirm'])
  today_confirmCutlist.append(value['confirmCuts'])
chinaTotaldata['今日确诊']=today_confirmlist
chinaTotaldata['今日死亡']=today_confirmCutlist

#删除total列 在原有的数据基础
chinaTotaldata.drop(['total','today'],axis=1,inplace=True)

# 将其保存到excel中
from openpyxl import load_workbook
book = load_workbook('国内疫情.xlsx')
# 避免了数据覆盖
writer = pd.ExcelWriter('国内疫情.xlsx',engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title,ws) for ws in book.worksheets)
chinaTotaldata.to_excel(writer,index=False)
writer.save()
writer.close()

chinaTotaldata

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

作者这边还有国外的,不过没打算分享出来,大家就看看,总的来说我们国内情况还是非常良好的

python绘图pyecharts+pandas的使用详解

到此这篇关于python绘图pyecharts+pandas的使用详解的文章就介绍到这了,更多相关pyecharts pandas使用内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
pyqt4教程之messagebox使用示例分享
Mar 07 Python
python的tkinter布局之简单的聊天窗口实现方法
Sep 03 Python
玩转python爬虫之正则表达式
Feb 17 Python
Python脚本处理空格的方法
Aug 08 Python
Python实现抢购IPhone手机
Feb 07 Python
python实现隐马尔科夫模型HMM
Mar 25 Python
vue.js实现输入框输入值内容实时响应变化示例
Jul 07 Python
Python格式化输出字符串方法小结【%与format】
Oct 29 Python
python实现一个简单的udp通信的示例代码
Feb 01 Python
pyqt5对用qt designer设计的窗体实现弹出子窗口的示例
Jun 19 Python
pytorch1.0中torch.nn.Conv2d用法详解
Jan 10 Python
解决pycharm每次打开项目都需要配置解释器和安装库问题
Feb 26 Python
Pandas对每个分组应用apply函数的实现
Dec 13 #Python
python安装及变量名介绍详解
Dec 12 #Python
在python中对于bool布尔值的取反操作
Dec 11 #Python
python 基于opencv 绘制图像轮廓
Dec 11 #Python
python通过cython加密代码
Dec 11 #Python
python 对象真假值的实例(哪些视为False)
Dec 11 #Python
Python排序函数的使用方法详解
Dec 11 #Python
You might like
在命令行下运行PHP脚本[带参数]的方法
2010/01/22 PHP
PHP进程通信基础之信号量与共享内存通信
2017/02/19 PHP
修改Laravel自带的认证系统的User类的命名空间的步骤
2019/10/15 PHP
JavaScript下申明对象的几种方法小结
2008/10/02 Javascript
改变javascript函数内部this指针指向的三种方法
2010/04/23 Javascript
浅谈Javascript鼠标和滚轮事件
2012/06/27 Javascript
详解Angular-Cli中引用第三方库
2017/05/21 Javascript
微信小程序API—获取定位的详解
2019/04/30 Javascript
vue中后端做Excel导出功能返回数据流前端的处理操作
2020/09/08 Javascript
jQuery实现购物车全功能
2021/01/11 jQuery
[42:52]IG vs VGJ.T 2018国际邀请赛小组赛BO2 第二场 8.18
2018/08/19 DOTA
Python写的英文字符大小写转换代码示例
2015/03/06 Python
讲解Python中fileno()方法的使用
2015/05/24 Python
Python基础语言学习笔记总结(精华)
2017/11/14 Python
python使用tornado实现简单爬虫
2018/07/28 Python
解决在Python编辑器pycharm中程序run正常debug错误的问题
2019/01/17 Python
python代码中怎么换行
2020/06/17 Python
解决python pandas读取excel中多个不同sheet表格存在的问题
2020/07/14 Python
python中用ggplot绘制画图实例讲解
2021/01/26 Python
HTML5+CSS3网页加载进度条的实现,下载进度条的代码实例
2016/12/30 HTML / CSS
通过Canvas及File API缩放并上传图片完整示例
2013/08/08 HTML / CSS
简单整理HTML5的基本特性和语法
2016/02/18 HTML / CSS
Under Armour美国官网:美国知名高端功能性运动品牌
2016/09/05 全球购物
暇步士官网:Hush Puppies
2016/09/22 全球购物
39美元购买一副眼镜或太阳镜:39DollarGlasses.com
2018/06/17 全球购物
机电工程学生自荐信范文
2013/12/07 职场文书
银行简历自我评价
2014/02/11 职场文书
红旗方阵解说词
2014/02/12 职场文书
机关党总支领导班子整改方案
2014/09/20 职场文书
2015年感恩父亲节演讲稿
2015/03/19 职场文书
2015年社区文体活动总结
2015/03/25 职场文书
2016教师暑期培训学习心得体会
2016/01/09 职场文书
Java异常处理try catch的基本用法
2021/12/06 Java/Android
使用Python通过企业微信应用给企业成员发消息
2022/04/18 Python
Python OpenGL基本配置方式
2022/05/20 Python
Spring Boot项目如何优雅实现Excel导入与导出功能
2022/06/10 Java/Android