python绘图pyecharts+pandas的使用详解


Posted in Python onDecember 13, 2020

pyecharts介绍

pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒

为避免绘制缺漏,建议全部安装

为了避免下载缓慢,作者全部使用镜像源下载过了

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-provinces-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-cities-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-counties-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-misc-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-united-kingdom-pypkg

python绘图pyecharts+pandas的使用详解 

基础案例

from pyecharts.charts import Bar
bar = Bar()
bar.add_xaxis(['小嘉','小琪','大嘉琪','小嘉琪'])
bar.add_yaxis('得票数',[60,60,70,100])
#render会生成本地HTML文件,默认在当前目录生成render.html
# bar.render()
#可以传入路径参数,如 bar.render("mycharts.html")
#可以将图形在jupyter中输出,如 bar.render_notebook()
bar.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Bar
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

# 1.x版本支持链式调用
bar = (Bar()
    .add_xaxis(cate)
    .add_yaxis('渠道', data1)
    .add_yaxis('门店', data2)
    .set_global_opts(title_opts=opts.TitleOpts(title="示例", subtitle="副标"))
   )
bar.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Pie
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data = [153, 124, 107, 99, 89, 46]

pie = (Pie()
    .add('', [list(z) for z in zip(cate, data)],
      radius=["30%", "75%"],
      rosetype="radius")
    .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
   )

pie.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Line
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

"""
折线图示例:
1. is_smooth 折线 OR 平滑
2. markline_opts 标记线 OR 标记点
"""
line = (Line()
    .add_xaxis(cate)
    .add_yaxis('电商渠道', data1, 
         markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
    .add_yaxis('门店', data2, 
         is_smooth=True, 
         markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点", 
                                       coord=[cate[2], data2[2]], value=data2[2])]))
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题"))
   )

line.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
import random

province = ['福州市', '莆田市', '泉州市', '厦门市', '漳州市', '龙岩市', '三明市', '南平']
data = [(i, random.randint(200, 550)) for i in province]

geo = (Geo()
    .add_schema(maptype="福建")
    .add("门店数", data,
      type_=ChartType.HEATMAP)
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
      visualmap_opts=opts.VisualMapOpts(),
      legend_opts=opts.LegendOpts(is_show=False),
      title_opts=opts.TitleOpts(title="福建热力地图"))
   )

geo.render_notebook()

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

啊哈这个还访问不了哈

ImportError: Missing optional dependency ‘xlrd'. Install xlrd >= 1.0.0 for Excel support Use pip or conda to install xlrd.

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

20200822pyecharts+pandas 初步学习

作者今天学习做数据分析,有错误请指出
下面贴出源代码

# 获取数据
import requests
import json
china_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
#foreign_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_foreign'
headers = {
  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36 Edg/84.0.522.59',
  'referer': 'https://news.qq.com/zt2020/page/feiyan.htm'
}
#获取json数据
response = requests.get(url=china_url,headers=headers).json()

print(response)
#先将json数据转 python的字典
data = json.loads(response['data'])

#保存数据 这里使用encoding='utf-8' 是因为作者想在jupyter上面看
with open('./国内疫情.json','w',encoding='utf-8') as f:
  #再将python的字典转json数据
  # json默认中文以ASCII码显示 在这里我们以中文显示 所以False
  #indent=2:开头空格2 

  f.write(json.dumps(data,ensure_ascii=False,indent=2))

转换为json格式输出的文件

python绘图pyecharts+pandas的使用详解

# 将json数据转存到Excel中
import pandas as pd
#读取文件
with open('./国内疫情.json',encoding='utf-8') as f:
  data = f.read()
  
#将数据转为python数据格式
data = json.loads(data)
type(data)#字典类型
lastUpdateTime = data['lastUpdateTime']
#获取中国所有数据
chinaAreaDict = data['areaTree'][0]
#获取省级数据
provinceList = chinaAreaDict['children']
# 获取的数据有几个省市和地区
print('数据共有:',len(provinceList),'省市和地区')
#将中国数据按城市封装,例如【{湖北,武汉},{湖北,襄阳}】,为了方便放在dataframe中
china_citylist = []
for x in range(len(provinceList)):
  # 每一个省份的数据
  province =provinceList[x]['name']
  #有多少个市
  province_list = provinceList[x]['children']
  
  for y in range(len(province_list)):
    # 每一个市的数据
    city = province_list[y]['name']
    # 累积所有的数据
    total = province_list[y]['total']
    # 今日的数据
    today = province_list[y]['today']
    china_dict = {'省份':province,
           '城市':city,
           'total':total,
           'today':today
           }
    china_citylist.append(china_dict)


chinaTotaldata = pd.DataFrame(china_citylist)
nowconfirmlist=[]
confirmlist=[]
suspectlist=[]
deadlist=[]
heallist=[]
deadRatelist=[]
healRatelist=[]

# 将整体数据chinaTotaldata的数据添加dataframe
for value in chinaTotaldata['total'] .values.tolist():#转成列表
  confirmlist.append(value['confirm'])
  suspectlist.append(value['suspect'])
  deadlist.append(value['dead'])
  heallist.append(value['heal'])
  deadRatelist.append(value['deadRate'])
  healRatelist.append(value['healRate'])
  nowconfirmlist.append(value['nowConfirm'])
  
chinaTotaldata['现有确诊']=nowconfirmlist  
chinaTotaldata['累计确诊']=confirmlist
chinaTotaldata['疑似']=suspectlist
chinaTotaldata['死亡']=deadlist
chinaTotaldata['治愈']=heallist
chinaTotaldata['死亡率']=deadRatelist
chinaTotaldata['治愈率']=healRatelist

#拆分today列
today_confirmlist=[]
today_confirmCutlist=[]

for value in chinaTotaldata['today'].values.tolist():
  today_confirmlist.append(value['confirm'])
  today_confirmCutlist.append(value['confirmCuts'])
chinaTotaldata['今日确诊']=today_confirmlist
chinaTotaldata['今日死亡']=today_confirmCutlist

#删除total列 在原有的数据基础
chinaTotaldata.drop(['total','today'],axis=1,inplace=True)

# 将其保存到excel中
from openpyxl import load_workbook
book = load_workbook('国内疫情.xlsx')
# 避免了数据覆盖
writer = pd.ExcelWriter('国内疫情.xlsx',engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title,ws) for ws in book.worksheets)
chinaTotaldata.to_excel(writer,index=False)
writer.save()
writer.close()

chinaTotaldata

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

作者这边还有国外的,不过没打算分享出来,大家就看看,总的来说我们国内情况还是非常良好的

python绘图pyecharts+pandas的使用详解

到此这篇关于python绘图pyecharts+pandas的使用详解的文章就介绍到这了,更多相关pyecharts pandas使用内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python脚本实现分析dns日志并对受访域名排行
Sep 18 Python
Python计算三维矢量幅度的方法
Jun 15 Python
Flask框架中密码的加盐哈希加密和验证功能的用法详解
Jun 07 Python
python使用pymysql实现操作mysql
Sep 13 Python
在pandas中一次性删除dataframe的多个列方法
Apr 10 Python
Flask配置Cors跨域的实现
Jul 12 Python
numpy.transpose()实现数组的转置例子
Dec 02 Python
python 操作hive pyhs2方式
Dec 21 Python
Python with语句和过程抽取思想
Dec 23 Python
python pptx复制指定页的ppt教程
Feb 14 Python
Selenium 滚动页面至元素可见的方法
Mar 18 Python
python使用列表的最佳方案
Aug 12 Python
Pandas对每个分组应用apply函数的实现
Dec 13 #Python
python安装及变量名介绍详解
Dec 12 #Python
在python中对于bool布尔值的取反操作
Dec 11 #Python
python 基于opencv 绘制图像轮廓
Dec 11 #Python
python通过cython加密代码
Dec 11 #Python
python 对象真假值的实例(哪些视为False)
Dec 11 #Python
Python排序函数的使用方法详解
Dec 11 #Python
You might like
动易数据转成dedecms的php程序
2007/04/07 PHP
List Installed Hot Fixes
2007/06/12 Javascript
JavaScript基本概念初级讲解论坛贴的学习记录
2009/02/22 Javascript
写了10年的Javascript也未必全了解的连续赋值运算
2011/03/25 Javascript
不用构造函数(Constructor)new关键字也能实现JavaScript的面向对象
2013/01/11 Javascript
使用JavaScript获取电池状态的方法
2014/05/03 Javascript
15款jQuery分布引导插件分享
2015/02/04 Javascript
JS数组操作(数组增加、删除、翻转、转字符串、取索引、截取(切片)slice、剪接splice、数组合并)
2016/05/20 Javascript
JS实现拖拽的方法分析
2016/12/20 Javascript
使用mint-ui开发项目的一些心得(分享)
2017/09/07 Javascript
Vue-cli中为单独页面设置背景色的实现方法
2018/02/11 Javascript
Spring Boot/VUE中路由传递参数的实现代码
2018/03/02 Javascript
详解angular分页插件tm.pagination二次触发问题解决方案
2018/07/20 Javascript
使用JS代码实现俄罗斯方块游戏
2018/08/03 Javascript
layui获取多选框中的值方法
2018/08/15 Javascript
AngularJS自定义表单验证功能实例详解
2018/08/24 Javascript
微信小程序Getuserinfo解决方案图解
2018/08/24 Javascript
基于vue2.0实现仿百度前端分页效果附实现代码
2018/10/30 Javascript
Vue源码解析之数组变异的实现
2018/12/04 Javascript
深入理解Node内建模块和对象
2019/03/12 Javascript
原生js实现轮播图特效
2020/05/04 Javascript
vue 实现基础组件的自动化全局注册
2020/12/25 Vue.js
python中精确输出JSON浮点数的方法
2014/04/18 Python
Python实现判断一个字符串是否包含子串的方法总结
2017/11/21 Python
Python实现的矩阵转置与矩阵相乘运算示例
2019/03/26 Python
Python比较配置文件的方法实例详解
2019/06/06 Python
Python 面向对象之类class和对象基本用法示例
2020/02/02 Python
python对一个数向上取整的实例方法
2020/06/18 Python
Auchan Direct波兰:欧尚在线杂货店
2016/10/19 全球购物
特步官方商城:Xtep
2017/03/21 全球购物
请问如下代码执行后a和b的值分别是什么
2016/05/05 面试题
铲车司机岗位职责
2014/03/15 职场文书
民主生活会批评与自我批评总结
2014/10/17 职场文书
2014办公室年度工作总结
2014/12/09 职场文书
2015暑期社会实践通讯稿
2015/07/18 职场文书
OpenCV实现反阈值二值化
2021/11/17 Java/Android