python绘图pyecharts+pandas的使用详解


Posted in Python onDecember 13, 2020

pyecharts介绍

pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒

为避免绘制缺漏,建议全部安装

为了避免下载缓慢,作者全部使用镜像源下载过了

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-provinces-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-cities-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-counties-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-misc-pypkg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-united-kingdom-pypkg

python绘图pyecharts+pandas的使用详解 

基础案例

from pyecharts.charts import Bar
bar = Bar()
bar.add_xaxis(['小嘉','小琪','大嘉琪','小嘉琪'])
bar.add_yaxis('得票数',[60,60,70,100])
#render会生成本地HTML文件,默认在当前目录生成render.html
# bar.render()
#可以传入路径参数,如 bar.render("mycharts.html")
#可以将图形在jupyter中输出,如 bar.render_notebook()
bar.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Bar
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

# 1.x版本支持链式调用
bar = (Bar()
    .add_xaxis(cate)
    .add_yaxis('渠道', data1)
    .add_yaxis('门店', data2)
    .set_global_opts(title_opts=opts.TitleOpts(title="示例", subtitle="副标"))
   )
bar.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Pie
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data = [153, 124, 107, 99, 89, 46]

pie = (Pie()
    .add('', [list(z) for z in zip(cate, data)],
      radius=["30%", "75%"],
      rosetype="radius")
    .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
   )

pie.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts.charts import Line
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

"""
折线图示例:
1. is_smooth 折线 OR 平滑
2. markline_opts 标记线 OR 标记点
"""
line = (Line()
    .add_xaxis(cate)
    .add_yaxis('电商渠道', data1, 
         markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
    .add_yaxis('门店', data2, 
         is_smooth=True, 
         markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点", 
                                       coord=[cate[2], data2[2]], value=data2[2])]))
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题"))
   )

line.render_notebook()

python绘图pyecharts+pandas的使用详解

from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
import random

province = ['福州市', '莆田市', '泉州市', '厦门市', '漳州市', '龙岩市', '三明市', '南平']
data = [(i, random.randint(200, 550)) for i in province]

geo = (Geo()
    .add_schema(maptype="福建")
    .add("门店数", data,
      type_=ChartType.HEATMAP)
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
      visualmap_opts=opts.VisualMapOpts(),
      legend_opts=opts.LegendOpts(is_show=False),
      title_opts=opts.TitleOpts(title="福建热力地图"))
   )

geo.render_notebook()

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

啊哈这个还访问不了哈

ImportError: Missing optional dependency ‘xlrd'. Install xlrd >= 1.0.0 for Excel support Use pip or conda to install xlrd.

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

20200822pyecharts+pandas 初步学习

作者今天学习做数据分析,有错误请指出
下面贴出源代码

# 获取数据
import requests
import json
china_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
#foreign_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_foreign'
headers = {
  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36 Edg/84.0.522.59',
  'referer': 'https://news.qq.com/zt2020/page/feiyan.htm'
}
#获取json数据
response = requests.get(url=china_url,headers=headers).json()

print(response)
#先将json数据转 python的字典
data = json.loads(response['data'])

#保存数据 这里使用encoding='utf-8' 是因为作者想在jupyter上面看
with open('./国内疫情.json','w',encoding='utf-8') as f:
  #再将python的字典转json数据
  # json默认中文以ASCII码显示 在这里我们以中文显示 所以False
  #indent=2:开头空格2 

  f.write(json.dumps(data,ensure_ascii=False,indent=2))

转换为json格式输出的文件

python绘图pyecharts+pandas的使用详解

# 将json数据转存到Excel中
import pandas as pd
#读取文件
with open('./国内疫情.json',encoding='utf-8') as f:
  data = f.read()
  
#将数据转为python数据格式
data = json.loads(data)
type(data)#字典类型
lastUpdateTime = data['lastUpdateTime']
#获取中国所有数据
chinaAreaDict = data['areaTree'][0]
#获取省级数据
provinceList = chinaAreaDict['children']
# 获取的数据有几个省市和地区
print('数据共有:',len(provinceList),'省市和地区')
#将中国数据按城市封装,例如【{湖北,武汉},{湖北,襄阳}】,为了方便放在dataframe中
china_citylist = []
for x in range(len(provinceList)):
  # 每一个省份的数据
  province =provinceList[x]['name']
  #有多少个市
  province_list = provinceList[x]['children']
  
  for y in range(len(province_list)):
    # 每一个市的数据
    city = province_list[y]['name']
    # 累积所有的数据
    total = province_list[y]['total']
    # 今日的数据
    today = province_list[y]['today']
    china_dict = {'省份':province,
           '城市':city,
           'total':total,
           'today':today
           }
    china_citylist.append(china_dict)


chinaTotaldata = pd.DataFrame(china_citylist)
nowconfirmlist=[]
confirmlist=[]
suspectlist=[]
deadlist=[]
heallist=[]
deadRatelist=[]
healRatelist=[]

# 将整体数据chinaTotaldata的数据添加dataframe
for value in chinaTotaldata['total'] .values.tolist():#转成列表
  confirmlist.append(value['confirm'])
  suspectlist.append(value['suspect'])
  deadlist.append(value['dead'])
  heallist.append(value['heal'])
  deadRatelist.append(value['deadRate'])
  healRatelist.append(value['healRate'])
  nowconfirmlist.append(value['nowConfirm'])
  
chinaTotaldata['现有确诊']=nowconfirmlist  
chinaTotaldata['累计确诊']=confirmlist
chinaTotaldata['疑似']=suspectlist
chinaTotaldata['死亡']=deadlist
chinaTotaldata['治愈']=heallist
chinaTotaldata['死亡率']=deadRatelist
chinaTotaldata['治愈率']=healRatelist

#拆分today列
today_confirmlist=[]
today_confirmCutlist=[]

for value in chinaTotaldata['today'].values.tolist():
  today_confirmlist.append(value['confirm'])
  today_confirmCutlist.append(value['confirmCuts'])
chinaTotaldata['今日确诊']=today_confirmlist
chinaTotaldata['今日死亡']=today_confirmCutlist

#删除total列 在原有的数据基础
chinaTotaldata.drop(['total','today'],axis=1,inplace=True)

# 将其保存到excel中
from openpyxl import load_workbook
book = load_workbook('国内疫情.xlsx')
# 避免了数据覆盖
writer = pd.ExcelWriter('国内疫情.xlsx',engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title,ws) for ws in book.worksheets)
chinaTotaldata.to_excel(writer,index=False)
writer.save()
writer.close()

chinaTotaldata

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

python绘图pyecharts+pandas的使用详解

作者这边还有国外的,不过没打算分享出来,大家就看看,总的来说我们国内情况还是非常良好的

python绘图pyecharts+pandas的使用详解

到此这篇关于python绘图pyecharts+pandas的使用详解的文章就介绍到这了,更多相关pyecharts pandas使用内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
浅谈MySQL中的触发器
May 05 Python
python计算对角线有理函数插值的方法
May 07 Python
linux下python抓屏实现方法
May 22 Python
python先序遍历二叉树问题
Nov 10 Python
使用CodeMirror实现Python3在线编辑器的示例代码
Jan 14 Python
Python3 A*寻路算法实现方式
Dec 24 Python
python实现单张图像拼接与批量图片拼接
Mar 23 Python
python实现凯撒密码、凯撒加解密算法
Jun 11 Python
Python读取yaml文件的详细教程
Jul 21 Python
基于Python实现下载网易音乐代码实例
Aug 10 Python
详解Python中的文件操作
Jan 14 Python
Python-OpenCV教程之图像的位运算详解
Jun 21 Python
Pandas对每个分组应用apply函数的实现
Dec 13 #Python
python安装及变量名介绍详解
Dec 12 #Python
在python中对于bool布尔值的取反操作
Dec 11 #Python
python 基于opencv 绘制图像轮廓
Dec 11 #Python
python通过cython加密代码
Dec 11 #Python
python 对象真假值的实例(哪些视为False)
Dec 11 #Python
Python排序函数的使用方法详解
Dec 11 #Python
You might like
PHP autoload与spl_autoload自动加载机制的深入理解
2013/06/05 PHP
ThinkPHP查询返回简单字段数组的方法
2014/08/25 PHP
javascript 特性检测并非浏览器检测
2010/01/15 Javascript
多个jquery.datatable共存,checkbox全选异常的快速解决方法
2013/12/10 Javascript
js Object2String方便查看js对象内容
2014/11/24 Javascript
ECMAScript中函数function类型
2015/06/03 Javascript
Javascript获取数组中的最大值和最小值的方法汇总
2016/01/01 Javascript
Bootstrap弹出带合法性检查的登录框实例代码【推荐】
2016/06/23 Javascript
EditPlus中的正则表达式 实战(2)
2016/12/15 Javascript
JS实现仿PS的调色板效果完整实例
2016/12/21 Javascript
Vue下的国际化处理方法
2017/12/18 Javascript
bootstrap中selectpicker下拉框使用方法实例
2018/03/22 Javascript
微信小程序实现上传图片功能
2018/05/28 Javascript
vue项目中jsonp跨域获取qq音乐首页推荐问题
2018/05/30 Javascript
浅谈super-vuex使用体验
2018/06/25 Javascript
Promise.all中对于reject的处理方法
2018/08/01 Javascript
彻底弄懂 JavaScript 执行机制
2018/10/23 Javascript
JS中min函数实例讲解
2019/02/18 Javascript
vue基于v-charts封装双向条形图的实现代码
2019/12/09 Javascript
JavaScript实现弹出窗口效果
2020/12/09 Javascript
[46:27]DOTA2上海特级锦标赛主赛事日 - 1 胜者组第一轮#2LGD VS MVP.Phx第一局
2016/03/02 DOTA
[07:09]DOTA2-DPC中国联赛 正赛 Ehome vs Elephant 选手采访
2021/03/11 DOTA
详解Python3中字符串中的数字提取方法
2017/01/14 Python
python实现用户管理系统
2018/01/10 Python
使用PyQt5实现图片查看器的示例代码
2020/04/21 Python
HTML5打开本地app应用的方法
2016/03/31 HTML / CSS
canvas小画板之平滑曲线的实现
2020/08/12 HTML / CSS
美国中小型企业领先的办公家具供应商:Office Designs
2016/11/26 全球购物
西班牙自行车和跑步商店:Alltricks
2018/07/07 全球购物
MAC Cosmetics巴西官方网站:M·A·C彩妆
2019/04/18 全球购物
大学生旅游业创业计划书
2014/01/29 职场文书
淘宝店铺营销方案
2014/02/13 职场文书
中小学校园安全广播稿
2014/09/29 职场文书
律政俏佳人观后感
2015/06/09 职场文书
倡议书怎么写?
2019/04/11 职场文书
教你用eclipse连接mysql数据库
2021/04/22 MySQL