Python爬虫自动化获取华图和粉笔网站的错题(推荐)


Posted in Python onJanuary 08, 2021

这篇博客对于考公人或者其他用华图或者粉笔做题的人比较友好,通过输入网址可以自动化获取华图以及粉笔练习的错题。

粉笔网站

我们从做过的题目组中获取错题

Python爬虫自动化获取华图和粉笔网站的错题(推荐)
Python爬虫自动化获取华图和粉笔网站的错题(推荐)

打开某一次做题组,我们首先进行抓包看看数据在哪里

Python爬虫自动化获取华图和粉笔网站的错题(推荐)

我们发现现在数据已经被隐藏,事实上数据在这两个包中:
https://tiku.fenbi.com/api/xingce/questions
https://tiku.fenbi.com/api/xingce/solutions
一个为题目的一个为解析的。此url要通过传入一个题目组参数才能获取到当前题目数据,而题目组参数在这个包中

Python爬虫自动化获取华图和粉笔网站的错题(推荐)

以网址的倒数第二个数字串有关

Python爬虫自动化获取华图和粉笔网站的错题(推荐)

url的规则为'https://tiku.fenbi.com/api/xingce/exercises/'+str(id_)+'?app=web&kav=12&version=3.0.0.0',id_即为下划线数字
通过请求这个包获取到参数然后通过参数请求上面两个包(

https://tiku.fenbi.com/api/xingce/questions
https://tiku.fenbi.com/api/xingce/solutions

)即可获取到题目数据,而且自己的答案在也在https://tiku.fenbi.com/api/xingce/exercises/'+str(id_)+'?app=web&kav=12&version=3.0.0.0这个包中。

不过粉笔的题目数据有些是图片,而且图片在题目中,选项中,这里以word文档存储操作docx库有些吃力,于是我想到了直接构造HTML代码,然后通过pdfkit转为pdf(具体如何下载可以参考百度,要下载wkhtmltopdf.exe)即可变为错题集在平板或者其他设备中看。
(请求时一定要携带完整的headers,否则很可能获取不到数据)

具体操作看代码解析

###此函数用于解析题目和每道题的答案
def jiexi(liebiao):
 new = []
 timu_last = []
 for each in liebiao:
  new.append(re.sub(r'flag=\\"tex\\" ','',each))
 for each in new:
  timu_last.append(re.sub(r'\\','',each))
 return timu_last
###此函数用于解析选项
def xuanxiang(liebiao):
 xuanxiang_v2 = []
 xuanxiang_v3 = []
 for each in liebiao:
  a = re.sub('<p>','',each)
  a = re.sub('</p>','',a)
  xuanxiang_v2.append(a)
 for each in xuanxiang_v2:
  each = each+'</p>'
  xuanxiang_v3.append(each)
 return xuanxiang_v3
import requests
import re
import pdfkit
import os
url = str(input("请输入练习的网址:"))
###获取本节练习id
id_ = re.findall(r'https://www.fenbi.com/spa/tiku.*?/xingce/xingce/(.*?)/',url,re.S)[0]
mid_url = 'https://tiku.fenbi.com/api/xingce/exercises/'+str(id_)+'?app=web&kav=12&version=3.0.0.0'
headers = {
#####完整的headers,自己添加
}
response = requests.get(url=mid_url,headers=headers)
response.encoding = 'utf-8'
page_text = response.text
###获取题目组参数
id_list = re.findall('\"questionIds\"\:\[(.*?)\]\,',page_text,re.S)
###获取自己的答案
your_answer = re.findall(r'"answer":{"choice":"(.*?)",',page_text,re.S)
###此练习名称
name = re.findall(r'"name":"(.*?)",',page_text,re.S)[0]
###真正存储数据的包
timu_url = 'https://tiku.fenbi.com/api/xingce/questions'
params = {
 'ids': id_list
}
response = requests.get(url=timu_url,headers=headers,params=params)
response.encoding = 'utf-8'
page_text = response.text
###获取正确答案
true_answer = re.findall('"correctAnswer":{"choice":"(.*?)"',page_text,re.S)
###真正存储数据的包
solution_url = 'https://tiku.fenbi.com/api/xingce/solutions'
response = requests.get(url=solution_url,headers=headers,params=params)
response.encoding = 'utf-8'
page_text = response.text
###获取解析
solution_list = re.findall(r'"solution":"(.*?)","userAnswer"',page_text,re.S)
solution_last = jiexi(solution_list)
cailiao = []
timu = []
###获取单选题题目和复合题的题目
for each in response.json():
 timu.append(each['content'])
 try:
  cailiao.append(each['material']['content'])
 except:
  cailiao.append('none')
###获取选项信息
A_option = re.findall('\"options\"\:\[\"(.*?)\"\,\".*?\"\,\".*?\"\,\".*?\"\]',page_text,re.S)
B_option = re.findall('\"options\"\:\[\".*?\"\,\"(.*?)\"\,\".*?\"\,\".*?\"\]',page_text,re.S)
C_option = re.findall('\"options\"\:\[\".*?\"\,\".*?\"\,\"(.*?)\"\,\".*?\"\]',page_text,re.S)
D_option = re.findall('\"options\"\:\[\".*?\"\,\".*?\"\,\".*?\"\,\"(.*?)\"\]',page_text,re.S)
A_option = xuanxiang(A_option)
B_option = xuanxiang(B_option)
C_option = xuanxiang(C_option)
D_option = xuanxiang(D_option)
A_option = jiexi(A_option)
B_option = jiexi(B_option)
C_option = jiexi(C_option)
D_option = jiexi(D_option)
###构造HTML代码
count = 0
all_content = "<!DOCTYPE html>\n<meta charset='utf-8'>\n<html>"
for each in true_answer:
 if each != your_answer[count]:
  ###处理复合题
  if cailiao[count] != 'none' and cailiao[count] not in all_content:
   all_content += cailiao[count]
  all_content += str(count+1)
  all_content += '、'
  all_content += timu[count][3:]
  all_content += 'A、'
  all_content += A_option[count]
  all_content += 'B、'
  all_content += B_option[count]
  all_content += 'C、'
  all_content += C_option[count]
  all_content += 'D、'
  all_content += D_option[count]
  all_content += '<br>'
 count += 1
count = 0
all_content += '<br><br><br><br><br><br><br><br><br>'
for each in true_answer:
 if each != your_answer[count]:
  temp = '第'+str(count+1)+'题的正确答案为'
  all_content += temp
  if true_answer[count]=='0':
   all_content += 'A'
  elif true_answer[count]=='1':
   all_content += 'B'
  elif true_answer[count]=='2':
   all_content += 'C'
  elif true_answer[count]=='3':
   all_content += 'D'
  all_content += solution_last[count]
  all_content += '<br>'
 count += 1
all_content += '</html>'
path_name = name + '.html'
###保存为HTML文件
with open(path_name,'w',encoding='utf-8') as fp:
 fp.write(all_content)
confg = pdfkit.configuration(wkhtmltopdf=r'wkhtmltopdf.exe保存的路径')
pdfkit.from_url(path_name, name+'.pdf',configuration=confg)###把HTML文件转为pdf
print('错题PDF保存成功')
###删除HTML文件
os.remove(path_name)

华图网站

Python爬虫自动化获取华图和粉笔网站的错题(推荐)

也是答题记录中自己做过的题目
华图网站稍微不一样,他的数据直接抓包就可看到

Python爬虫自动化获取华图和粉笔网站的错题(推荐)

通过请求这个包即可获取到数据,接下来就是解析的事情了,这次我用word文档进行存储,如果觉得不方便也可以像上文一样构造HTML

##导包
import requests
import lxml.etree
import re
import time
import os
from docx import Document
from docx.shared import Inches
from docx.shared import Pt
from docx.shared import Inches
from docx.oxml.ns import qn
from docx.enum.text import WD_ALIGN_PARAGRAPH
url = str(input("请输入练习的网址:"))
headers={
###完整的headers,否则获取不到数据
}
response = requests.get(url = url,headers = headers)
response.encoding='utf-8'
reptext = response.text
tree = lxml.etree.HTML(reptext) #解析网站获取源码

dirName="考公图片"
if not os.path.exists(dirName):
 os.mkdir(dirName) #网站图片保存路径
 
jiexi = re.findall(r'<div class="jiexi-item-title">解析.*?。</div>.*?</div>', reptext,re.S) #获取题目解析

imgg = []
for each in jiexi:
 imgg.append(re.findall(r'<img src="(.*?)".*?>', each)) #获取解析里的图片URL
 
imgt = []
for each in imgg:
 if each == []:
  imgt.append([1])
 else:
  imgt.append(each) #把解析里图片URL美化整理一下
  
jiexilast = []
for qq in jiexi:
 jiexilast.append(re.sub(r'<[^>]+>', '', qq)) #美化题目解析
 
corrected = re.findall(r'<span class="g-right-answer-color">[a-zA-Z]{1,4}</span>', reptext) #获取正确答案
correct = []
for ee in corrected:
 correct.append(re.sub(r'<[^>]+>', '', ee)) #美化正确答案
 
yoursed = re.findall(r'<span class="yellowWord">[a-zA-Z]{1,4}</span>', reptext) #获取自己的答案
yours = []
for ee in yoursed:
 yours.append(re.sub(r'<[^>]+>', '', ee)) #美化自己的答案
 
timuleixing = re.findall(r'<span class="greenWord">(.*?)</span>.*?</div>',reptext,re.S) #获取题目类型

find1 = re.findall(r'<span class="greenWord">.*?</span>(.*?)</div>',reptext,re.S)
for each in find1:
 re.sub(r'<.*?>','',each)
find5 = [] #最终的题目
for each in find1:
 find5.append(re.sub(r'<[^>]+>', '', each))
 
img = []
for each in find1:
 img.append(re.findall(r'<img src="(.*?)".*?>', each))
imgx = []
for each in img:
 if each == []:
  imgx.append([1])
 else:
  imgx.append(each) #最终版题目图片URL
  

v = tree.xpath('//div[@class="exercise-main-title"]//text()') #本次题目类型

try:
 ###这是既有复合题也有单选题的
 fuheti = re.findall(r'<!--复合题-->(.*?)<div class="exercise-main-topics"',reptext,re.S)[0].split('<!--复合题-->')
except:
 try:
  ###这是只有复合题或者复合题在最后几题的
  fuheti = re.findall(r'<!--复合题-->(.*?)<!-- 纠错的弹窗 -->',reptext,re.S)[0].split('<!--复合题-->')
 except:
  pass
count = 0

###导入标题
document = Document()
p = document.add_paragraph()
p.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.CENTER
run = p.add_run(v[0][5:-3])
run.font.size = Pt(14)
run.font.name=u'宋体'
r = run._element
r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
choose = []

###处理题目选项
axuanxiang = []
bxuanxiang = []
cxuanxiang = []
dxuanxiang = []
xuanxiang = re.findall(r'<div class="main-topic-choices">(.*?)<div class="main-topic-letters clearfix pl14">',reptext,re.S)
for everything in xuanxiang:
 try: ##处理只有两个选项
  axuanxiang.append(re.sub("<.*?>","",re.findall(r'<div.*?class.*?main-topic-choice.*?>(A.*?)</div>',everything,re.S)[0]))
 except:
  axuanxiang.append('--')
 try:
  bxuanxiang.append(re.sub("<.*?>","",re.findall(r'<div.*?class.*?main-topic-choice.*?>(B.*?)</div>',everything,re.S)[0]))
 except:
  bxuanxiang.append('--')
 try:
  cxuanxiang.append(re.sub("<.*?>","",re.findall(r'<div.*?class.*?main-topic-choice.*?>(C.*?)</div>',everything,re.S)[0]))
 except:
  cxuanxiang.append('--')
 try:
  dxuanxiang.append(re.sub("<.*?>","",re.findall(r'<div.*?class.*?main-topic-choice.*?>(D.*?)</div>',everything,re.S)[0]))
 except:
  dxuanxiang.append('--')
  

 
for every in correct:
 if every != yours[count]:
  ###处理复合题题目
  try:
   for eacy in fuheti:
    if find5[count] in eacy:
     fuheti_URL = re.findall(r'<img src="(.*?)".*?>',re.findall(r'.*?<p>(.*?)</p>',eacy,re.S)[0],re.S)
     fuheti_last = re.sub(r'<.*?>','',re.findall(r'.*?<p>(.*?)</p>',eacy,re.S)[0])
     fuheti_last = re.sub(r'\xa0\xa0\xa0\xa0\xa0\xa0\xa0','\n',fuheti_last)
     if fuheti_last not in choose:
      p = document.add_paragraph()
      run = p.add_run(fuheti_last)
      run.font.size = Pt(14)
      run.font.name=u'宋体'
      r = run._element
      r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
      headers ={
     'Use-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36'
       }
      for eacu in fuheti_URL:
       img_data = requests.get(url = eacu,headers = headers).content
       img_path = dirName+'/'+'tupian'+'.jpg'
       with open(img_path,'wb') as fp:
        fp.write(img_data)
        print("保存成功")
       document.add_picture(img_path, width=Inches(5))
      choose.append(fuheti_last)
  except:
   pass
  
  ###导入单选题题目
  p = document.add_paragraph()
  run = p.add_run(str(count+1)+"、"+timuleixing[count]+find5[count][3:])
  run.font.size = Pt(14)
  run.font.name=u'宋体'
  r = run._element
  r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
  url = imgx[count][0]
  headers ={
   'Use-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36'
  }
  try:
   img_data = requests.get(url = url,headers = headers).content
   img_path = dirName+'/'+'tupian'+'.jpg'
   with open(img_path,'wb') as fp:
    fp.write(img_data)
    print("保存成功")
   document.add_picture(img_path, width=Inches(5))
   count+=1
  except:
   count+=1
   
  ###导入选项
  p = document.add_paragraph()
  run = p.add_run(axuanxiang[count-1])
  run.font.size = Pt(14)
  run.font.name=u'宋体'
  r = run._element
  r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
  p = document.add_paragraph()
  run = p.add_run(bxuanxiang[count-1])
  run.font.size = Pt(14)
  run.font.name=u'宋体'
  r = run._element
  r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
  p = document.add_paragraph()
  run = p.add_run(cxuanxiang[count-1])
  run.font.size = Pt(14)
  run.font.name=u'宋体'
  r = run._element
  r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
  p = document.add_paragraph()
  run = p.add_run(dxuanxiang[count-1])
  run.font.size = Pt(14)
  run.font.name=u'宋体'
  r = run._element
  r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
  p = document.add_paragraph()
  run = p.add_run("\n")
  run.font.size = Pt(14)
  run.font.name=u'宋体'
  r = run._element
  r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
  
 else:
  count+=1

###美化界面
p = document.add_paragraph()
run = p.add_run("\n\n\n\n\n")
run.font.size = Pt(14)
run.font.name=u'宋体'
r = run._element
r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')

###美化解析
counting = 0
jiexilast2 = []
for ok in jiexilast:
 jiexilast2.append(re.sub(r'\n\t\t',':',ok))
for every in correct:
 if every != yours[counting]:
  ###导入解析和答案
  p = document.add_paragraph()
  run = p.add_run(str(counting+1)+"、"+"正确答案为:"+correct[counting]+"\n"+jiexilast2[counting])
  run.font.size = Pt(14)
  run.font.name=u'宋体'
  r = run._element
  r.rPr.rFonts.set(qn('w:eastAsia'),u'宋体')
  url = imgt[counting][0]
  headers ={
   'Use-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36'
  }
  try:
   img_data = requests.get(url = url,headers = headers).content
   img_path = dirName+'/'+'tupian'+'.jpg'
   with open(img_path,'wb') as fp:
    fp.write(img_data)
    print("保存成功")
   document.add_picture(img_path, width=Inches(5))
   print("写入成功")
   counting+=1
  except:
   counting+=1
 else:
  counting+=1
###保存文档
document.save(v[0][5:-3]+'.docx')
print(v[0][5:-3]+'保存成功!')

总结

粉笔和华图错题爬虫主要区别是华图获取数据简单,解析操作繁琐;粉笔的数据隐秘,解析起来可以用json,比较方便。

到此这篇关于Python爬虫自动化获取华图和粉笔网站的错题的文章就介绍到这了,更多相关Python爬虫获取网站错题内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
浅谈python中对于json写入txt文件的编码问题
Jun 07 Python
使用python的pandas库读取csv文件保存至mysql数据库
Aug 20 Python
python2.7和NLTK安装详细教程
Sep 19 Python
python实现归并排序算法
Nov 22 Python
OpenCV搞定腾讯滑块验证码的实现代码
May 18 Python
python图形工具turtle绘制国际象棋棋盘
May 23 Python
python 图片二值化处理(处理后为纯黑白的图片)
Nov 01 Python
PyTorch 对应点相乘、矩阵相乘实例
Dec 27 Python
pytorch+lstm实现的pos示例
Jan 14 Python
深度学习入门之Pytorch 数据增强的实现
Feb 26 Python
详解Scrapy Redis入门实战
Nov 18 Python
pytorch 6 batch_train 批训练操作
May 28 Python
tensorflow与numpy的版本兼容性问题的解决
Jan 08 #Python
matplotlib自定义鼠标光标坐标格式的实现
Jan 08 #Python
selenium设置浏览器为headless无头模式(Chrome和Firefox)
Jan 08 #Python
python画图时设置分辨率和画布大小的实现(plt.figure())
Jan 08 #Python
python使用matplotlib的savefig保存时图片保存不完整的问题
Jan 08 #Python
Numpy中的数组搜索中np.where方法详细介绍
Jan 08 #Python
python 窃取摄像头照片的实现示例
Jan 08 #Python
You might like
一步一步学习PHP(3) php 函数
2010/02/15 PHP
ThinkPHP使用getlist方法实现数据搜索功能示例
2017/05/08 PHP
ThinkPHP框架实现定时执行任务的两种方法分析
2018/09/04 PHP
IE和FireFox(FF)中js和css的不同
2009/04/13 Javascript
document.getElementById方法在Firefox与IE中的区别
2010/05/18 Javascript
Jquery 选中表格一列并对表格排序实现原理
2012/12/15 Javascript
用RadioButten或CheckBox实现div的显示与隐藏
2013/09/21 Javascript
js加入收藏夹代码(兼容ie/ff/op)
2014/05/16 Javascript
nodejs创建web服务器之hello world程序
2015/08/20 NodeJs
Bootstrap模态框水平垂直居中与增加拖拽功能
2016/11/09 Javascript
微信小程序 switch组件详解及简单实例
2017/01/10 Javascript
js 原型对象和原型链理解
2017/02/09 Javascript
js实现3D图片展示效果
2017/03/09 Javascript
Vue 处理表单input单行文本框的实例代码
2019/05/09 Javascript
微信小程序实现元素渐入渐出动画效果封装方法
2019/05/18 Javascript
VUE 直接通过JS 修改html对象的值导致没有更新到数据中解决方法分析
2019/12/02 Javascript
[04:10]2018年度CS GO玩家最喜爱的主播-完美盛典
2018/12/16 DOTA
Python编程之多态用法实例详解
2015/05/19 Python
Python中字符串格式化str.format的详细介绍
2017/02/17 Python
python使用KNN算法手写体识别
2018/02/01 Python
Python 普通最小二乘法(OLS)进行多项式拟合的方法
2018/12/29 Python
Python利用sqlacodegen自动生成ORM实体类示例
2019/06/04 Python
python flask 如何修改默认端口号的方法步骤
2019/07/12 Python
python可视化text()函数使用详解
2020/02/11 Python
tensorflow 2.0模式下训练的模型转成 tf1.x 版本的pb模型实例
2020/06/22 Python
美国标志性加大尺码时装品牌:Ashley Stewart
2016/12/15 全球购物
致200米运动员广播稿
2014/02/06 职场文书
财务会计大学生自我评价
2014/04/09 职场文书
小学生植树节活动总结
2014/07/04 职场文书
学校消防安全责任书
2014/07/23 职场文书
2014年助理工程师工作总结
2014/11/14 职场文书
北京导游词
2015/02/12 职场文书
追悼词范文大全
2015/06/23 职场文书
有关保护环境的宣传标语100条
2019/08/07 职场文书
创业计划书之网吧
2019/10/10 职场文书
两行代码解决Jupyter Notebook中文不能显示的问题
2021/04/24 Python