Python利用matplotlib绘制折线图的新手教程


Posted in Python onNovember 05, 2020

前言

matplotlib是Python中的一个第三方库。主要用于开发2D图表,以渐进式、交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力。

一、安装matplotlib

pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

二、matplotlib图像简介

matplotlib的图像分为三层,容器层、辅助显示层和图像层。

1. 容器层主要由Canvas、Figure、Axes组成。

Canvas位于图像的最底层,充当画布的作用。

Figure位于Canvas之上,指画布上的一整张图像。

Axes位于Figure之上,指Figure中的单个图表,一个Figure中可以有一个或多个Axes,即一张图像中可以有一个或多个图表。

2. 辅助显示层是单个图表(Axes)中用来提供辅助信息的层。

辅助显示层主要包括Axes外观(facecolor)、边框线(spines)、坐标轴(axis)、坐标轴名称(axis label)、坐标轴刻度(tick)、坐标轴刻度标签(tick label)、网格线(grid)、图例(legend)、标题(title)等内容。

辅助层可使图像显示更加直观,提高可读性。

3. 图像层指Axes内通过plot、scatter、bar、histogram、pie等函数绘制出的图形。

三、matplotlib绘制折线图

# coding=utf-8
import matplotlib.pyplot as plt
 
 
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
  '3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
plt.plot(game, scores)
plt.show()

运行结果:

Python利用matplotlib绘制折线图的新手教程

figure(): 创建图像并设置图像的大小等属性,返回一张图像,可以传入很多参数,常用参数有两个。figsize参数传入一个元组(width, height),设置图像的大小。dpi传入一个整数值,设置图像的清晰度。

plot(): matplotlib中绘制折线图的函数。可以传入很多参数,一般传入两个列表,分别是折线图中的x值和y值。上面的例子中用了NBA2020年季后赛James的得分数据。

show(): 展示图像。

在上面的图表中,x坐标值中有中文,首次使用matplotlib绘图时中文无法正常显示。要解决中文显示问题,需要下载安装SimHei字体,下载链接:https://www.zitijia.com/i/281258939050380345.html,或直接搜索SimHei然后找一个正确的网站下载。下载完成后,在Windows下直接解压双击安装。安装完成后删除~/.matplotlib中的缓存文件,并创建配置文件matplotlibrc,将matplotlibrc中的内容设置为如下内容。

font.family   : sans-serif
font.sans-serif  : SimHei
axes.unicode_minus : False

操作命令如下截图,完成后图像中就可以正常显示中文了。

Python利用matplotlib绘制折线图的新手教程

使用上面的代码,已经实现了简单的折线图,但展示的效果很差,所以需要进行优化,使图像展示得更好。

四、matplotlib优化折线图

import matplotlib.pyplot as plt
 
 
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
  '3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
plt.plot(game, scores, c='red')
plt.scatter(game, scores, c='red')
y_ticks = range(50)
plt.yticks(y_ticks[::5])
plt.grid(True, linestyle='--', alpha=0.5)
plt.xlabel("赛程", fontdict={'size': 16})
plt.ylabel("得分", fontdict={'size': 16})
plt.title("NBA2020季后赛詹姆斯得分", fontdict={'size': 20})
plt.show()

运行结果:

Python利用matplotlib绘制折线图的新手教程

在使用plot()函数绘图时,可以通过c='颜色'来设置折线图的颜色。

scatter(): 绘制散点图。折线图是用直线连接相邻的两个点形成的,但是连成折线后点的显示不明显。scatter可以单独对点进行设置,展示得更明显。

yticks(): 用于设置y轴坐标的范围,传入一个可迭代对象(如range()函数)。最开始绘制的折线图中,图像的y轴坐标范围是数据的范围,坐标原点不是0,使用yticks函数可以设置想要的坐标范围。同理xticks可以用于设置x轴坐标的范围。

grid(): 用于设置图表中的网格线,使用linestyle参数设置网格线的样式,常用的样式有下表中的几种,plot()函数中也可以用linestyle参数设置折线图的样式。使用alpha参数设置网格线的透明度。

样式字符实线- 虚线- - 点划线-.点虚线: 

xlabel(): 用于设置x轴的标签,说明x轴坐标的含义,第一个参数传入需要设置的标签值,后面可以通过其他参数设置显示的效果,如字体大小等。ylabel同理。

title(): 用于设置折线图的标题,说明这张折线图展示的数据。用法同xlabel。

五、matplotlib绘制多条折线图

import matplotlib.pyplot as plt
 
 
plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
  '3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
rebounds = [17, 6, 12, 6, 10, 8, 11, 7, 15, 11, 6, 11, 10, 9, 16, 13, 9, 10, 12, 13, 14]
assists = [16, 7, 8, 10, 10, 7, 9, 5, 9, 7, 12, 4, 11, 8, 10, 9, 9, 8, 8, 7, 10]
plt.plot(game, scores, c='red', label="得分")
plt.plot(game, rebounds, c='green', linestyle='--', label="篮板")
plt.plot(game, assists, c='blue', linestyle='-.', label="助攻")
plt.scatter(game, scores, c='red')
plt.scatter(game, rebounds, c='green')
plt.scatter(game, assists, c='blue')
plt.legend(loc='best')
plt.yticks(range(0, 50, 5))
plt.grid(True, linestyle='--', alpha=0.5)
plt.xlabel("赛程", fontdict={'size': 16})
plt.ylabel("数据", fontdict={'size': 16})
plt.title("NBA2020季后赛詹姆斯数据", fontdict={'size': 20})
plt.show()

运行结果:

Python利用matplotlib绘制折线图的新手教程

要在同一张图像中展示多条折线图,多次调用plot()函数就行。每条折线图的颜色、样式等可以分别设置,以便更好地进行区分。

legend(): 展示图例,通过loc参数传入图例在图表中展示的位置,可以传入的值有‘best', 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center',这十一个值分别对应数字0~10,传值时也可以传对应的数字,后面十个值都指定了图例的位置,'best'表示自适应,会自动根据图像的分布在后面的十个值中选择一个,大部分为右上角'upper right'。

为了使用图例,在每次调用plot()函数绘制折线图时,需要使用label参数给折线图添加标签,在图例中展示。有多条折线图时,图例可以用于区分每条折线图表示的含义,如将James的得分和篮板、助攻展示在同一张图中。

六、matplotlib绘制多张折线图

import matplotlib.pyplot as plt
 
 
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 6), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
  '3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
rebounds = [17, 6, 12, 6, 10, 8, 11, 7, 15, 11, 6, 11, 10, 9, 16, 13, 9, 10, 12, 13, 14]
assists = [16, 7, 8, 10, 10, 7, 9, 5, 9, 7, 12, 4, 11, 8, 10, 9, 9, 8, 8, 7, 10]
y_data = [scores, rebounds, assists]
colors = ['red', 'green', 'blue']
line_style = ['-', '--', '-.']
y_labels = ["得分", "篮板", "助攻"]
for i in range(3):
 axs[i].plot(game, y_data[i], c=colors[i], label=y_labels[i], linestyle=line_style[i])
 axs[i].scatter(game, y_data[i], c=colors[i])
 axs[i].legend(loc='best')
 axs[i].set_yticks(range(0, 50, 5))
 axs[i].grid(True, linestyle='--', alpha=0.5)
 axs[i].set_xlabel("赛程", fontdict={'size': 16})
 axs[i].set_ylabel(y_labels[i], fontdict={'size': 16}, rotation=0)
 axs[i].set_title("NBA2020季后赛詹姆斯{}".format(y_labels[i]), fontdict={'size': 20})
fig.autofmt_xdate()
plt.show()

运行结果:

Python利用matplotlib绘制折线图的新手教程

subplots(): 用于在同一张图像中绘制多张图表,通过nrows, ncols两个参数设置图表的张数和排列方式,figsize和dpi同figure()函数。subplots()函数返回两个参数,一个是图像对象fig,一个是可迭代的图表数组axs(类型为numpy中的数组对象)。

每一张图表中的标签、标题、样式、图例等都需要单独设置,为了避免代码过于冗余,可以使用循环。绘制每一张图表时,从axs中取出每一张图表,再调用plot()函数绘图。在设置坐标轴、标签、标题时,使用'set_'开头的方法进行设置,如设置x轴标签用set_xlabel()。

autofmt_xdate(): x轴坐标值自适应倾斜。因为一张图像中有多张图表,x坐标值靠得很近,可能会因重叠造成展示效果差,使用fig对象的autofmt_xdate()方法可以设置自适应倾斜。

以上就是matplotlib实现折线图的简单介绍,更多设置可以参考官网https://matplotlib.org/tutorials/index.html,并多作尝试。

总结

到此这篇关于Python利用matplotlib绘制折线图的文章就介绍到这了,更多相关Python matplotlib绘制折线图内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python3.3实现乘法表示例
Feb 07 Python
批处理与python代码混合编程的方法
May 19 Python
Python中断言Assertion的一些改进方案
Oct 27 Python
浅析python实现scrapy定时执行爬虫
Mar 04 Python
python线程池threadpool使用篇
Apr 27 Python
python实现支付宝当面付(扫码支付)功能
May 30 Python
Django认证系统实现的web页面实现代码
Aug 12 Python
PyQt5多线程刷新界面防假死示例
Dec 13 Python
python实现加密的方式总结
Jan 19 Python
Python 实现将numpy中的nan和inf,nan替换成对应的均值
Jun 08 Python
Python3利用openpyxl读写Excel文件的方法实例
Feb 03 Python
python 三种方法提取pdf中的图片
Feb 07 Python
详解Django中异步任务之django-celery
Nov 05 #Python
Python Django路径配置实现过程解析
Nov 05 #Python
Python基于tkinter canvas实现图片裁剪功能
Nov 05 #Python
Python利用matplotlib绘制散点图的新手教程
Nov 05 #Python
Python如何利用Har文件进行遍历指定字典替换提交的数据详解
Nov 05 #Python
Python word文本自动化操作实现方法解析
Nov 05 #Python
Python自动化办公Excel模块openpyxl原理及用法解析
Nov 05 #Python
You might like
深入extjs与php参数交互的详解
2013/06/25 PHP
PHP include任意文件或URL介绍
2014/04/29 PHP
项目中应用Redis+Php的场景
2016/05/22 PHP
Linux平台php命令行程序处理管道数据的方法
2016/11/10 PHP
PHP实现财务审核通过后返现金额到客户的功能
2019/07/04 PHP
弹出层之1:JQuery.Boxy (一) 使用介绍
2011/10/06 Javascript
jQuery常用操作方法及常用函数总结
2014/06/19 Javascript
分享一则JavaScript滚动条插件源码
2015/03/03 Javascript
AngularJS 日期格式化详解
2015/12/23 Javascript
jQuery javascript获得网页的高度与宽度的实现代码
2016/04/26 Javascript
javascript中的 object 和 function小结
2016/08/14 Javascript
jquery实现下拉框多选方法介绍
2017/01/03 Javascript
详解react-router如何实现按需加载
2017/06/15 Javascript
node实现简单的反向代理服务器
2017/07/26 Javascript
解决vue处理axios post请求传参的问题
2018/03/05 Javascript
Element-ui之ElScrollBar组件滚动条的使用方法
2018/09/14 Javascript
Node.js如何对SQLite的async/await封装详解
2019/02/14 Javascript
js+css3实现炫酷时钟
2020/08/18 Javascript
Python中使用第三方库xlutils来追加写入Excel文件示例
2015/04/05 Python
Django的URLconf中使用缺省视图参数的方法
2015/07/18 Python
Linux 发邮件磁盘空间监控(python)
2016/04/23 Python
python实现的正则表达式功能入门教程【经典】
2017/06/05 Python
Python读取txt文件数据的方法(用于接口自动化参数化数据)
2018/06/27 Python
Python增强赋值和共享引用注意事项小结
2019/05/28 Python
pandas实现to_sql将DataFrame保存到数据库中
2019/07/03 Python
Python-Seaborn热图绘制的实现方法
2019/07/15 Python
django 做 migrate 时 表已存在的处理方法
2019/08/31 Python
分享CSS3制作卡片式图片的方法
2016/07/08 HTML / CSS
Evisu官方网站:日本牛仔品牌,时尚街头设计风格
2016/12/30 全球购物
公司董事长职责
2013/12/12 职场文书
竞聘副主任科员演讲稿
2014/01/11 职场文书
2014年五一促销活动方案
2014/03/09 职场文书
软件项目开发计划书
2014/05/01 职场文书
国际语言毕业生求职信
2014/07/08 职场文书
关于成绩下滑的自我检讨书
2014/09/20 职场文书
孝老爱亲事迹材料
2014/12/24 职场文书