Python pandas用法最全整理


Posted in Python onAugust 04, 2019

1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:

import numpy as npimport pandas as pd

2、导入CSV或者xlsx文件:

df = pd.DataFrame(pd.read_csv('name.csv',header=1))df = pd.DataFrame(pd.read_excel('name.xlsx'))

3、用pandas创建数据表:

df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006], "date":pd.date_range('20130102', periods=6), "city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '], "age":[23,44,54,32,34,32], "category":['100-A','100-B','110-A','110-C','210-A','130-F'], "price":[1200,np.nan,2133,5433,np.nan,4432]},columns =['id','date','city','category','age','price'])

二、数据表信息查看

1、维度查看:

df.shape

2、数据表基本信息(维度、列名称、数据格式、所占空间等):

df.info()

3、每一列数据的格式:

df.dtypes

4、某一列格式:

df['B'].dtype

5、空值:

df.isnull()

6、查看某一列空值:

df.isnull()

7、查看某一列的唯一值:

df['B'].unique()

8、查看数据表的值:

df.values

9、查看列名称:

df.columns

10、查看前10行数据、后10行数据:

df.head() #默认前10行数据df.tail()  #默认后10 行数据

相关推荐:《Python视频教程》

三、数据表清洗

1、用数字0填充空值:

df.fillna(value=0)

2、使用列prince的均值对NA进行填充:

df['prince'].fillna(df['prince'].mean())

3、清楚city字段的字符空格:

df['city']=df['city'].map(str.strip)

4、大小写转换:

df['city']=df['city'].str.lower()

5、更改数据格式:

df['price'].astype('int')

6、更改列名称:

df.rename(columns={'category': 'category-size'})

7、删除后出现的重复值:

df['city'].drop_duplicates()

8、删除先出现的重复值:

df['city'].drop_duplicates(keep='last')

9、数据替换:

df['city'].replace('sh', 'shanghai')

四、数据预处理

df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008], "gender":['male','female','male','female','male','female','male','female'],"pay":['Y','N','Y','Y','N','Y','N','Y',],"m-point":[10,12,20,40,40,40,30,20]})

1、数据表合并

df_inner=pd.merge(df,df1,how='inner') # 匹配合并,交集df_left=pd.merge(df,df1,how='left')    #df_right=pd.merge(df,df1,how='right')df_outer=pd.merge(df,df1,how='outer') #并集

2、设置索引列

df_inner.set_index('id')

3、按照特定列的值排序:

df_inner.sort_values(by=['age'])

4、按照索引列排序:

df_inner.sort_index()

5、如果prince列的值>3000,group列显示high,否则显示low:

df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')

6、对复合多个条件的数据进行分组标记

df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1

7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size

pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size']))

8、将完成分裂后的数据表和原df_inner数据表进行匹配

df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)

五、数据提取

主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。

1、按索引提取单行的数值

df_inner.loc[3]

2、按索引提取区域行数值

df_inner.iloc[0:5]

3、重设索引

df_inner.reset_index()

4、设置日期为索引

df_inner=df_inner.set_index('date')

5、提取4日之前的所有数据

df_inner[:'2013-01-04']

6、使用iloc按位置区域提取数据

df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。

7、适应iloc按位置单独提起数据

df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列

8、使用ix按索引标签和位置混合提取数据

df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据

9、判断city列的值是否为北京

df_inner['city'].isin(['beijing'])

10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来

df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])]

11、提取前三个字符,并生成数据表

pd.DataFrame(category.str[:3])

六、数据筛选

使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。

1、使用“与”进行筛选

df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]

2、使用“或”进行筛选

df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age'])

3、使用“非”条件进行筛选

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id'])

4、对筛选后的数据按city列进行计数

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()

5、使用query函数进行筛选

df_inner.query('city == ["beijing", "shanghai"]')

6、对筛选后的结果按prince进行求和

df_inner.query('city == ["beijing", "shanghai"]').price.sum()

七、数据汇总

主要函数是groupby和pivote_table

1、对所有的列进行计数汇总

df_inner.groupby('city').count()

2、按城市对id字段进行计数

df_inner.groupby('city')['id'].count()

3、对两个字段进行汇总计数

df_inner.groupby(['city','size'])['id'].count()

4、对city字段进行汇总,并分别计算prince的合计和均值

df_inner.groupby('city')['price'].agg([len,np.sum, np.mean])

八、数据统计

数据采样,计算标准差,协方差和相关系数

1、简单的数据采样

df_inner.sample(n=3)

2、手动设置采样权重

weights = [0, 0, 0, 0, 0.5, 0.5]df_inner.sample(n=2, weights=weights)

3、采样后不放回

df_inner.sample(n=6, replace=False)

4、采样后放回

df_inner.sample(n=6, replace=True)

5、 数据表描述性统计

df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置

6、计算列的标准差

df_inner['price'].std()

7、计算两个字段间的协方差

df_inner['price'].cov(df_inner['m-point'])

8、数据表中所有字段间的协方差

df_inner.cov()

9、两个字段的相关性分析

df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关

10、数据表的相关性分析

df_inner.corr()

九、数据输出

分析后的数据可以输出为xlsx格式和csv格式

1、写入Excel

df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc')

2、写入到CSV

df_inner.to_csv('excel_to_python.csv')

以上就是最全的Python pandas用法总结的详细内容,感谢大家的阅读和对三水点靠木的支持。

Python 相关文章推荐
python 输出一个两行字符的变量
Feb 05 Python
使用python搭建Django应用程序步骤及版本冲突问题解决
Nov 19 Python
python进阶教程之循环对象
Aug 30 Python
Python写入CSV文件的方法
Jul 08 Python
对python实现合并两个排序链表的方法详解
Jan 23 Python
对dataframe数据之间求补集的实例详解
Jan 30 Python
浅谈keras的深度模型训练过程及结果记录方式
Jan 24 Python
python目标检测给图画框,bbox画到图上并保存案例
Mar 10 Python
python中的socket实现ftp客户端和服务器收发文件及md5加密文件
Apr 01 Python
python 3.8.3 安装配置图文教程
May 21 Python
Django通过设置CORS解决跨域问题
Nov 26 Python
python实现KNN近邻算法
Dec 30 Python
python匿名函数用法实例分析
Aug 03 #Python
pycharm编写spark程序,导入pyspark包的3中实现方法
Aug 02 #Python
Python适配器模式代码实现解析
Aug 02 #Python
Python3网络爬虫开发实战之极验滑动验证码的识别
Aug 02 #Python
pandas中DataFrame修改index、columns名的方法示例
Aug 02 #Python
pandas DataFrame的修改方法(值、列、索引)
Aug 02 #Python
Flask框架钩子函数功能与用法分析
Aug 02 #Python
You might like
用php+mysql一个名片库程序
2006/10/09 PHP
Thinkphp中的curd应用实用要点
2015/01/04 PHP
php实现文件上传及头像预览功能
2017/01/15 PHP
Jquery升级新版本后选择器的语法问题
2010/06/02 Javascript
JQuery跨Iframe选择实现代码
2010/08/19 Javascript
初学js 新节点的创建 删除 的步骤
2011/07/04 Javascript
JavaScript中的this关键字使用方法总结
2015/03/13 Javascript
js代码实现点击按钮出现60秒倒计时
2021/01/28 Javascript
微信小程序 视图层(xx.xml)和逻辑层(xx.js)详细介绍
2016/10/13 Javascript
Bootstrap轮播图学习使用
2017/02/10 Javascript
浅谈js中function的参数默认值
2017/02/20 Javascript
JS正则表达式判断有效数实例代码
2017/03/13 Javascript
react-native之ART绘图方法详解
2017/08/08 Javascript
在vue项目中使用Jquery-contextmenu插件的步骤讲解
2019/01/27 jQuery
微信小程序 slot踩坑的解决
2019/04/01 Javascript
JavaScript实现栈结构Stack过程详解
2020/03/07 Javascript
Python 正则表达式入门(中级篇)
2016/12/07 Python
分享一个可以生成各种进制格式IP的小工具实例代码
2017/07/28 Python
Python3正则匹配re.split,re.finditer及re.findall函数用法详解
2018/06/11 Python
python读取xlsx的方法
2018/12/25 Python
python基于paramiko将文件上传到服务器代码实现
2019/07/08 Python
基于TensorFlow常量、序列以及随机值生成实例
2020/01/04 Python
Python 中的函数装饰器和闭包详解
2021/02/06 Python
英国高街奥特莱斯:Highstreet Outlet
2019/11/21 全球购物
PHP如何防止SQL注入
2014/05/03 面试题
SQL Server笔试题
2012/01/10 面试题
关爱留守儿童倡议书
2014/04/15 职场文书
学前班评语大全
2014/05/04 职场文书
教师群众路线教育实践活动个人对照检查材料
2014/11/04 职场文书
中标通知书范本
2015/04/17 职场文书
投标单位介绍信
2015/05/05 职场文书
严以律己学习心得体会
2016/01/13 职场文书
2019年干货:自我鉴定
2019/03/25 职场文书
mybatis中注解与xml配置的对应关系和对比分析
2021/08/04 Java/Android
nginx配置限速限流基于内置模块
2022/05/02 Servers
python双向链表实例详解
2022/05/25 Python