利用Python计算KS的实例详解


Posted in Python onMarch 03, 2020

在金融领域中,我们的y值和预测得到的违约概率刚好是两个分布未知的两个分布。好的信用风控模型一般从准确性、稳定性和可解释性来评估模型。

一般来说。好人样本的分布同坏人样本的分布应该是有很大不同的,KS正好是有效性指标中的区分能力指标:KS用于模型风险区分能力进行评估,KS指标衡量的是好坏样本累计分布之间的差值。

好坏样本累计差异越大,KS指标越大,那么模型的风险区分能力越强。

1、crosstab实现,计算ks的核心就是好坏人的累积概率分布,我们采用pandas.crosstab函数来计算累积概率分布。

2、roc_curve实现,sklearn库中的roc_curve函数计算roc和auc时,计算过程中已经得到好坏人的累积概率分布,同时我们利用sklearn.metrics.roc_curve来计算ks值

3、ks_2samp实现,调用stats.ks_2samp()函数来计算。链接scipy.stats.ks_2samp¶为ks_2samp()实现源码,这里实现了详细过程

4、直接调用stats.ks_2samp()计算ks

import pandas as pd 
import numpy as np
from sklearn.metrics import roc_curve
from scipy.stats import ks_2samp
 
def ks_calc_cross(data,pred,y_label):
  '''
  功能: 计算KS值,输出对应分割点和累计分布函数曲线图
  输入值:
  data: 二维数组或dataframe,包括模型得分和真实的标签
  pred: 一维数组或series,代表模型得分(一般为预测正类的概率)
  y_label: 一维数组或series,代表真实的标签({0,1}或{-1,1})
  输出值:
  'ks': KS值,'crossdens': 好坏客户累积概率分布以及其差值gap
  '''
  crossfreq = pd.crosstab(data[pred[0]],data[y_label[0]])
  crossdens = crossfreq.cumsum(axis=0) / crossfreq.sum()
  crossdens['gap'] = abs(crossdens[0] - crossdens[1])
  ks = crossdens[crossdens['gap'] == crossdens['gap'].max()]
  return ks,crossdens
 
def ks_calc_auc(data,pred,y_label):
  '''
  功能: 计算KS值,输出对应分割点和累计分布函数曲线图
  输入值:
  data: 二维数组或dataframe,包括模型得分和真实的标签
  pred: 一维数组或series,代表模型得分(一般为预测正类的概率)
  y_label: 一维数组或series,代表真实的标签({0,1}或{-1,1})
  输出值:
  'ks': KS值
  '''
  fpr,tpr,thresholds= roc_curve(data[y_label[0]],data[pred[0]])
  ks = max(tpr-fpr)
  return ks
 
def ks_calc_2samp(data,pred,y_label):
  '''
  功能: 计算KS值,输出对应分割点和累计分布函数曲线图
  输入值:
  data: 二维数组或dataframe,包括模型得分和真实的标签
  pred: 一维数组或series,代表模型得分(一般为预测正类的概率)
  y_label: 一维数组或series,代表真实的标签({0,1}或{-1,1})
  输出值:
  'ks': KS值,'cdf_df': 好坏客户累积概率分布以及其差值gap
  '''
  Bad = data.loc[data[y_label[0]]==1,pred[0]]
  Good = data.loc[data[y_label[0]]==0, pred[0]]
  data1 = Bad.values
  data2 = Good.values
  n1 = data1.shape[0]
  n2 = data2.shape[0]
  data1 = np.sort(data1)
  data2 = np.sort(data2)
  data_all = np.concatenate([data1,data2])
  cdf1 = np.searchsorted(data1,data_all,side='right')/(1.0*n1)
  cdf2 = (np.searchsorted(data2,data_all,side='right'))/(1.0*n2)
  ks = np.max(np.absolute(cdf1-cdf2))
  cdf1_df = pd.DataFrame(cdf1)
  cdf2_df = pd.DataFrame(cdf2)
  cdf_df = pd.concat([cdf1_df,cdf2_df],axis = 1)
  cdf_df.columns = ['cdf_Bad','cdf_Good']
  cdf_df['gap'] = cdf_df['cdf_Bad']-cdf_df['cdf_Good']
  return ks,cdf_df
 
data = {'y_label':[1,1,1,1,1,1,0,0,0,0,0,0],
    'pred':[0.5,0.6,0.7,0.6,0.6,0.8,0.4,0.2,0.1,0.4,0.3,0.9]}
 
data = pd.DataFrame(data)
ks1,crossdens=ks_calc_cross(data,['pred'], ['y_label'])
 
ks2=ks_calc_auc(data,['pred'], ['y_label'])
 
ks3=ks_calc_2samp(data,['pred'], ['y_label'])
 
get_ks = lambda y_pred,y_true: ks_2samp(y_pred[y_true==1], y_pred[y_true!=1]).statistic
ks4=get_ks(data['pred'],data['y_label'])
print('KS1:',ks1['gap'].values)
print('KS2:',ks2)
print('KS3:',ks3[0])
print('KS4:',ks4)

输出结果:

KS1: [ 0.83333333]
KS2: 0.833333333333
KS3: 0.833333333333
KS4: 0.833333333333

当数据中存在NAN数据时,有一些问题需要注意!

例如,我们在原数据中增加了y_label=0,pred=np.nan这样一组数据

data = {'y_label':[1,1,1,1,1,1,0,0,0,0,0,0,0],
'pred':[0.5,0.6,0.7,0.6,0.6,0.8,0.4,0.2,0.1,0.4,0.3,0.9,np.nan]}

此时执行

ks1,crossdens=ks_calc_cross(data,['pred'], ['y_label'])

输出结果

KS1: [ 0.83333333]

执行

ks2=ks_calc_auc(data,['pred'], ['y_label'])

将会报以下错误

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

执行

ks3=ks_calc_2samp(data,['pred'], ['y_label'])

输出结果

KS3: 0.714285714286

执行

ks4=get_ks(data['pred'],data['y_label'])

输出结果

KS4: 0.714285714286

我们从上述结果中可以看出

三种方法计算得到的ks值均不相同。

ks_calc_cross计算时忽略了NAN,计算得到了数据正确的概率分布,计算的ks与我们手算的ks相同

ks_calc_auc函数由于内置函数无法处理NAN值,直接报错了,所以如果需要ks_calc_auc计算ks值时,需要提前去除NAN值。

ks_calc_2samp计算得到的ks因为searchsorted()函数(有兴趣的同学可以自己模拟数据看下这个函数),会将Nan值默认排序为最大值,从而改变了数据的原始累积分布概率,导致计算得到的ks和真实的ks有误差。

总结

在实际情况下,我们一般计算违约概率的ks值,这时是不存在NAN值的。所以以上三种方法计算ks值均可。但是当我们计算单变量的ks值时,有时数据质量不好,存在NAN值时,继续采用ks_calc_auc和ks_calc_2samp就会存在问题。

解决办法有两个

1. 提前去除数据中的NAN值

2. 直接采用ks_calc_cross计算。

以上这篇利用Python计算KS的实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现的数据结构与算法之队列详解
Apr 22 Python
探究Python中isalnum()方法的使用
May 18 Python
python清除字符串中间空格的实例讲解
May 11 Python
python用户评论标签匹配的解决方法
May 31 Python
python Web开发你要理解的WSGI & uwsgi详解
Aug 01 Python
Python实现截取PDF文件中的几页代码实例
Mar 11 Python
python实现小球弹跳效果
May 10 Python
python中hasattr()、getattr()、setattr()函数的使用
Aug 16 Python
Python Process多进程实现过程
Oct 22 Python
python模拟点击网页按钮实现方法
Feb 25 Python
用python 绘制茎叶图和复合饼图
Feb 26 Python
pandas进行数据输入和输出的方法详解
Mar 23 Python
python如何提取英语pdf内容并翻译
Mar 03 #Python
Pycharm如何运行.py文件的方法步骤
Mar 03 #Python
python生成大写32位uuid代码
Mar 03 #Python
python str字符串转uuid实例
Mar 03 #Python
PyCharm取消波浪线、下划线和中划线的实现
Mar 03 #Python
python生成并处理uuid的实现方式
Mar 03 #Python
python实现在线翻译功能
Mar 03 #Python
You might like
咖啡的化学
2021/03/03 咖啡文化
在Mac OS上搭建PHP的Yii框架及相关测试环境
2016/02/14 PHP
宝塔面板在NGINX环境中TP5.1如何运行?
2021/03/09 PHP
从零开始学习jQuery (十一) 实战表单验证与自动完成提示插件
2011/02/23 Javascript
JavaScript中instanceof与typeof运算符的用法及区别详细解析
2013/11/19 Javascript
js图片向右一张张滚动效果实例代码
2013/11/23 Javascript
javascript打开word文档的方法
2014/04/16 Javascript
JavaScript中操作字符串之localeCompare()方法的使用
2015/06/06 Javascript
javascript日期验证之输入日期大于等于当前日期
2015/12/13 Javascript
学习掌握JavaScript中this的使用技巧
2016/08/29 Javascript
详解用原生JavaScript实现jQuery的某些简单功能
2016/12/19 Javascript
JS及JQuery对Html内容编码,Html转义
2017/02/17 Javascript
angularjs实现猜数字大小功能
2020/05/20 Javascript
Jquery遍历筛选数组的几种方法和遍历解析json对象,Map()方法详解以及数组中查询某值是否存在
2019/01/18 jQuery
如何解决js函数防抖、节流出现的问题
2019/06/17 Javascript
layuiAdmin循环遍历展示商品图片列表的方法
2019/09/16 Javascript
JS实现灯泡开关特效
2020/03/30 Javascript
d3.js 地铁轨道交通项目实战
2019/11/27 Javascript
基于原生js实现判断元素是否有指定class名
2020/07/11 Javascript
[01:11:37]完美世界DOTA2联赛PWL S2 SZ vs FTD.C 第一场 11.19
2020/11/19 DOTA
[47:31]完美世界DOTA2联赛PWL S3 INK ICE vs DLG 第一场 12.12
2020/12/16 DOTA
Python绘制七段数码管实例代码
2017/12/20 Python
基于python实现复制文件并重命名
2020/09/16 Python
CSS3 开发工具收集
2010/04/17 HTML / CSS
Dr. Martens马汀博士官网:马丁靴始祖品牌
2016/10/15 全球购物
国际书籍零售商:Wordery
2017/11/01 全球购物
世界领先的豪华床上用品供应商之一:Bedeck Home
2019/03/18 全球购物
机关门卫制度
2014/02/01 职场文书
公司采购主管岗位职责
2014/06/17 职场文书
红白喜事主持词
2015/07/06 职场文书
关于分班的感言
2015/08/04 职场文书
导游词之重庆钓鱼城
2019/09/19 职场文书
SpringAop日志找不到方法的处理
2021/06/21 Java/Android
python turtle绘图
2022/05/04 Python
SQL Server使用T-SQL语句批处理
2022/05/20 SQL Server
Python安装及建立虚拟环境的完整步骤
2022/06/25 Servers