python基于三阶贝塞尔曲线的数据平滑算法


Posted in Python onDecember 27, 2019

前言

很多文章在谈及曲线平滑的时候,习惯使用拟合的概念,我认为这是不恰当的。平滑后的曲线,一定经过原始的数据点,而拟合曲线,则不一定要经过原始数据点。

一般而言,需要平滑的数据分为两种:时间序列的单值数据、时间序列的二维数据。对于前者,并非一定要用贝塞尔算法,仅用样条插值就可以轻松实现平滑;而对于后者,不管是 numpy 还是 scipy 提供的那些插值算法,就都不适用了。

本文基于三阶贝塞尔曲线,实现了时间序列的单值数据和时间序列的二维数据的平滑算法,可满足大多数的平滑需求。

贝塞尔曲线

关于贝塞尔曲线的数学原理,这里就不讨论了,直接贴出结论:

一阶贝塞尔曲线

python基于三阶贝塞尔曲线的数据平滑算法

python基于三阶贝塞尔曲线的数据平滑算法

二阶贝塞尔曲线

python基于三阶贝塞尔曲线的数据平滑算法

python基于三阶贝塞尔曲线的数据平滑算法

三阶贝塞尔曲线

python基于三阶贝塞尔曲线的数据平滑算法

python基于三阶贝塞尔曲线的数据平滑算法

算法描述

如果我们把三阶贝塞尔曲线的 P0 和 P3 视为原始数据,只要找到 P1 和 P2 两个点(我们称其为控制点),就可以根据三阶贝塞尔曲线公式,计算出 P0 和 P3 之间平滑曲线上的任意点。

python基于三阶贝塞尔曲线的数据平滑算法

现在,平滑问题变成了如何计算两个原始数据点之间的控制点的问题。步骤如下:

第1步:绿色直线连接相邻的原始数据点,计算出个线段的中点,红色直线连接相邻的中点

python基于三阶贝塞尔曲线的数据平滑算法

第2步:根据相邻两条绿色直线长度之比,分割其中点之间红色连线,标记分割点

python基于三阶贝塞尔曲线的数据平滑算法

第3步:平移红色连线,使其分割点与相对的原始数据点重合

python基于三阶贝塞尔曲线的数据平滑算法

第4步:调整平移后红色连线的端点与原始数据点的距离,通常缩减40%-80%

python基于三阶贝塞尔曲线的数据平滑算法

算法实现

# -*- coding: utf-8 -*-

import numpy as np

def bezier_curve(p0, p1, p2, p3, inserted):
 """
 三阶贝塞尔曲线
 
 p0, p1, p2, p3 - 点坐标,tuple、list或numpy.ndarray类型
 inserted  - p0和p3之间插值的数量
 """
 
 assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
 assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
 assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
 assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
 
 if isinstance(p0, (tuple, list)):
  p0 = np.array(p0)
 if isinstance(p1, (tuple, list)):
  p1 = np.array(p1)
 if isinstance(p2, (tuple, list)):
  p2 = np.array(p2)
 if isinstance(p3, (tuple, list)):
  p3 = np.array(p3)
 
 points = list()
 for t in np.linspace(0, 1, inserted+2):
  points.append(p0*np.power((1-t),3) + 3*p1*t*np.power((1-t),2) + 3*p2*(1-t)*np.power(t,2) + p3*np.power(t,3))
 
 return np.vstack(points)


def smoothing_base_bezier(date_x, date_y, k=0.5, inserted=10, closed=False):
 """
 基于三阶贝塞尔曲线的数据平滑算法
 
 date_x  - x维度数据集,list或numpy.ndarray类型
 date_y  - y维度数据集,list或numpy.ndarray类型
 k   - 调整平滑曲线形状的因子,取值一般在0.2~0.6之间。默认值为0.5
 inserted - 两个原始数据点之间插值的数量。默认值为10
 closed  - 曲线是否封闭,如是,则首尾相连。默认曲线不封闭
 """
 
 assert isinstance(date_x, (list, np.ndarray)), u'x数据集不是期望的列表或numpy数组类型'
 assert isinstance(date_y, (list, np.ndarray)), u'y数据集不是期望的列表或numpy数组类型'
 
 if isinstance(date_x, list) and isinstance(date_y, list):
  assert len(date_x)==len(date_y), u'x数据集和y数据集长度不匹配'
  date_x = np.array(date_x)
  date_y = np.array(date_y)
 elif isinstance(date_x, np.ndarray) and isinstance(date_y, np.ndarray):
  assert date_x.shape==date_y.shape, u'x数据集和y数据集长度不匹配'
 else:
  raise Exception(u'x数据集或y数据集类型错误')
 
 # 第1步:生成原始数据折线中点集
 mid_points = list()
 for i in range(1, date_x.shape[0]):
  mid_points.append({
   'start': (date_x[i-1], date_y[i-1]),
   'end':  (date_x[i], date_y[i]),
   'mid':  ((date_x[i]+date_x[i-1])/2.0, (date_y[i]+date_y[i-1])/2.0)
  })
 
 if closed:
  mid_points.append({
   'start': (date_x[-1], date_y[-1]),
   'end':  (date_x[0], date_y[0]),
   'mid':  ((date_x[0]+date_x[-1])/2.0, (date_y[0]+date_y[-1])/2.0)
  })
 
 # 第2步:找出中点连线及其分割点
 split_points = list()
 for i in range(len(mid_points)):
  if i < (len(mid_points)-1):
   j = i+1
  elif closed:
   j = 0
  else:
   continue
  
  x00, y00 = mid_points[i]['start']
  x01, y01 = mid_points[i]['end']
  x10, y10 = mid_points[j]['start']
  x11, y11 = mid_points[j]['end']
  d0 = np.sqrt(np.power((x00-x01), 2) + np.power((y00-y01), 2))
  d1 = np.sqrt(np.power((x10-x11), 2) + np.power((y10-y11), 2))
  k_split = 1.0*d0/(d0+d1)
  
  mx0, my0 = mid_points[i]['mid']
  mx1, my1 = mid_points[j]['mid']
  
  split_points.append({
   'start': (mx0, my0),
   'end':  (mx1, my1),
   'split': (mx0+(mx1-mx0)*k_split, my0+(my1-my0)*k_split)
  })
 
 # 第3步:平移中点连线,调整端点,生成控制点
 crt_points = list()
 for i in range(len(split_points)):
  vx, vy = mid_points[i]['end'] # 当前顶点的坐标
  dx = vx - split_points[i]['split'][0] # 平移线段x偏移量
  dy = vy - split_points[i]['split'][1] # 平移线段y偏移量
  
  sx, sy = split_points[i]['start'][0]+dx, split_points[i]['start'][1]+dy # 平移后线段起点坐标
  ex, ey = split_points[i]['end'][0]+dx, split_points[i]['end'][1]+dy # 平移后线段终点坐标
  
  cp0 = sx+(vx-sx)*k, sy+(vy-sy)*k # 控制点坐标
  cp1 = ex+(vx-ex)*k, ey+(vy-ey)*k # 控制点坐标
  
  if crt_points:
   crt_points[-1].insert(2, cp0)
  else:
   crt_points.append([mid_points[0]['start'], cp0, mid_points[0]['end']])
  
  if closed:
   if i < (len(mid_points)-1):
    crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end']])
   else:
    crt_points[0].insert(1, cp1)
  else:
   if i < (len(mid_points)-2):
    crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end']])
   else:
    crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end'], mid_points[i+1]['end']])
    crt_points[0].insert(1, mid_points[0]['start'])
 
 # 第4步:应用贝塞尔曲线方程插值
 out = list()
 for item in crt_points:
  group = bezier_curve(item[0], item[1], item[2], item[3], inserted)
  out.append(group[:-1])
 
 out.append(group[-1:])
 out = np.vstack(out)
 
 return out.T[0], out.T[1]


if __name__ == '__main__':
 import matplotlib.pyplot as plt
 
 x = np.array([2,4,4,3,2])
 y = np.array([2,2,4,3,4])
	
	plt.plot(x, y, 'ro')
 x_curve, y_curve = smoothing_base_bezier(x, y, k=0.3, closed=True)
 plt.plot(x_curve, y_curve, label='$k=0.3$')
 x_curve, y_curve = smoothing_base_bezier(x, y, k=0.4, closed=True)
 plt.plot(x_curve, y_curve, label='$k=0.4$')
 x_curve, y_curve = smoothing_base_bezier(x, y, k=0.5, closed=True)
 plt.plot(x_curve, y_curve, label='$k=0.5$')
 x_curve, y_curve = smoothing_base_bezier(x, y, k=0.6, closed=True)
 plt.plot(x_curve, y_curve, label='$k=0.6$')
 plt.legend(loc='best')
 
 plt.show()

下图为平滑效果。左侧是封闭曲线,两个原始数据点之间插值数量为默认值10;右侧为同样数据不封闭的效果,k值默认0.5.

python基于三阶贝塞尔曲线的数据平滑算法

参考资料

算法参考了 Interpolation with Bezier Curves 这个网页,里面没有关于作者的任何信息,在此只能笼统地向国际友人表示感谢!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python操作SQLite简明教程
Jul 10 Python
利用Python实现颜色色值转换的小工具
Oct 27 Python
轻松理解Python 中的 descriptor
Sep 15 Python
Python基于辗转相除法求解最大公约数的方法示例
Apr 04 Python
pytorch + visdom CNN处理自建图片数据集的方法
Jun 04 Python
python画微信表情符的实例代码
Oct 09 Python
Python socket实现的文件下载器功能示例
Nov 15 Python
python之pymysql模块简单应用示例代码
Dec 16 Python
Python图像处理库PIL的ImageDraw模块介绍详解
Feb 26 Python
Python是怎样处理json模块的
Jul 16 Python
如何利用Matlab制作一款真正的拼图小游戏
May 11 Python
Pytorch 实现变量类型转换
May 17 Python
python3获取文件中url内容并下载代码实例
Dec 27 #Python
用python拟合等角螺线的实现示例
Dec 27 #Python
PyTorch 对应点相乘、矩阵相乘实例
Dec 27 #Python
pytorch中tensor.expand()和tensor.expand_as()函数详解
Dec 27 #Python
python装饰器相当于函数的调用方式
Dec 27 #Python
Python 实现数组相减示例
Dec 27 #Python
Pandas 解决dataframe的一列进行向下顺移问题
Dec 27 #Python
You might like
PHP安全配置
2006/10/09 PHP
php下使用strpos需要注意 === 运算符
2010/07/17 PHP
关于UEditor编辑器远程图片上传失败的解决办法
2012/08/31 PHP
php发送短信验证码完成注册功能
2015/11/24 PHP
PHP二分查找算法示例【递归与非递归方法】
2016/09/29 PHP
Yii核心验证器api详解
2016/11/23 PHP
php实现XML和数组的相互转化功能示例
2017/02/08 PHP
关于php支持的协议与封装协议总结(推荐)
2017/11/17 PHP
javascript oop开发滑动(slide)菜单控件
2010/08/25 Javascript
js函数的引用, 关于内存的开销
2012/09/17 Javascript
用按钮控制iframe显示的网页实现方法
2013/02/04 Javascript
jquery parent和parents的区别分析
2013/10/02 Javascript
使用JavaScript的ActiveXObject对象检测应用程序是否安装的方法
2014/04/15 Javascript
JavaScript中的slice()方法使用详解
2015/06/06 Javascript
JavaScript中通过提示框跳转页面的方法
2016/02/14 Javascript
Google 地图事件实例讲解
2016/08/06 Javascript
详解Vue源码中一些util函数
2019/04/24 Javascript
如何在Vue中抽离接口配置文件
2019/10/31 Javascript
vue使用原生swiper代码实例
2020/02/05 Javascript
python检测是文件还是目录的方法
2015/07/03 Python
利用python程序生成word和PDF文档的方法
2017/02/14 Python
Python 含参构造函数实例详解
2017/05/25 Python
Python如何快速实现分布式任务
2017/07/06 Python
django实现同一个ip十分钟内只能注册一次的实例
2017/11/03 Python
tensorflow常用函数API介绍
2020/04/19 Python
Python基于数列实现购物车程序过程详解
2020/06/09 Python
Cpython解释器中的GIL全局解释器锁
2020/11/09 Python
Python WebSocket长连接心跳与短连接的示例
2020/11/24 Python
世界上最全面的汽车零部件和配件集合:JC Whitney
2016/09/04 全球购物
美国旅游网站:Tours4Fun
2017/02/17 全球购物
综合办公室主任职责
2013/12/16 职场文书
Canvas跟随鼠标炫彩小球的实现
2021/04/11 Javascript
MySQL如何构建数据表索引
2021/05/13 MySQL
Pandas搭配lambda组合使用详解
2022/01/22 Python
sql server偶发出现死锁的解决方法
2022/04/10 SQL Server
第四次工业革命,打工人与机器人的竞争
2022/04/21 数码科技