Pandas时间序列重采样(resample)方法中closed、label的作用详解


Posted in Python onDecember 10, 2019

Pandas提供了便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样:

  • 降采样:时间粒度变大。例如,原来是按天统计的数据,现在变成按周统计。降采样会涉及到数据的聚合,比如天数据变成周数据,那么就得对一周的7天数据聚合,聚合的方式可以是求和,求均值等等。
  • 升采样:时间粒度变小。例如,原来是按周统计的数据,现在变成按天统计。升采样会涉及到数据的填充,根据填充的方法不同填充的数据也就不同。

下面涉及的例子,都需要导入numpy和pandas(如下),并且对于降采样数据的聚合做简单的求和处理。

import numpy as np
import pandas as pd

Pandas重采样方法resample

在Pandas里,通过resample来处理重采样,根据频率的不同(freq)会处理成降采样或者升采样。我们先来看看Resample的定义和关键参数注释:

resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)
  Convenience method for frequency conversion and resampling of time
  series. Object must have a datetime-like index (DatetimeIndex,
  PeriodIndex, or TimedeltaIndex), or pass datetime-like values
  to the on or level keyword.
  
Parameters
----------
closed : {'right', 'left'}
    Which side of bin interval is closed. The default is ‘left' for all frequency offsets except for ‘M', ‘A', ‘Q', ‘BM', ‘BA', ‘BQ', and ‘W' which all have a default of ‘right'.
label : {'right', 'left'}
    Which bin edge label to label bucket with. The default is ‘left' for all frequency offsets except for ‘M', ‘A', ‘Q', ‘BM', ‘BA', ‘BQ', and ‘W' which all have a default of ‘right'.

第一眼看closed和label这两个参数,会感觉云里雾里,即使看了例子也可能会觉得莫名奇妙。下面我们通过具体的降采样和升采样例子,来解读一下这个两个参数内含的玄机。

降采样

首先先来创建一个时间序列,起始日期是2018/01/01,一共12天,每天对应的数值分别是1到12:

rng = pd.date_range('20180101', periods=12)
ts = pd.Series(np.arange(1,13), index=rng)

print(ts)

#### Outputs ####
2018-01-01   1
2018-01-02   2
2018-01-03   3
2018-01-04   4
2018-01-05   5
2018-01-06   6
2018-01-07   7
2018-01-08   8
2018-01-09   9
2018-01-10  10
2018-01-11  11
2018-01-12  12
Freq: D, dtype: int32

下面使用resample方法来做降采样处理,频率是5天,上面提到的两个参数,都使用默认值:

ts_5d = ts.resample('5D').sum()
print(ts_5d)

#### Outputs ####
2018-01-01  15
2018-01-06  40
2018-01-11  23
Freq: 5D, dtype: int32

到这里,我相信不论是代码还是代码的结果都很好理解:无非就是每5天来个求和。在第一部分中,我们列出了closed参数的注释,从注释可知,closed默认的值是'left'。那如果把closed的值改为'right',结果有是怎么样的?

ts_5d_rightclosed = ts.resample('5D', closed='right').sum()
print(ts_5d_rightclosed)

#### Outputs ####
2017-12-27   1
2018-01-01  20
2018-01-06  45
2018-01-11  12
Freq: 5D, dtype: int32

怎么会这样?为什么变成了四个区间?closed=right到底做了什么?

别着急,我们来一步一步看看,这其中发生了什么事情。原始的时间序列是从18年1月1号到1月12号,一共12天。以5天为单位降采样处理后,变成了三个5天,分别是:

  • 第一个5天:1-2-3-4-5-6
  • 第二个5天:6-7-8-9-10-11
  • 第三个5天:12-13-14-15-16

实际上,这三个5天就是三个区间了。和数学里区间的概念一样,区间有开和闭的概念。在resample中,区间的开和闭,就是通过closed这个参数来控制。用数学符号表示的话:

closed = 'left' 左闭右开

上面的三个5天可以由以下的三个左闭右开的区间构成:

  • 区间1:[1, 6)
  • 区间2: [6, 11)
  • 区间3:[11, 16) 例子中,时间只到12号为止,但是这里会往后补足5天

现在,在这三个区间上做数据聚合也就很好理解了。对于区间1进行求和,也就是12、13、14、15、16这5天的值求和即可。区间2和区间3也是同理。所以下面的代码就很好理解了:

ts_5d_leftclosed = ts.resample('5D', closed='right').sum()
print(ts_5d_leftclosed)

#### Outputs ####
2018-01-01  15
2018-01-06  40
2018-01-11  23
Freq: 5D, dtype: int32

closed = 'right' 左开右闭

上面的三个5天可以由以下的四个左开右闭的区间构成。注意,由于第一个5天是从1号到6号,但由于是左开区间,1号就落不到1到6号的那个区间,所以要往前补足:

  • 区间1:(27, 1]
  • 区间2:(1, 6]
  • 区间3: (6, 11]
  • 区间4:(11, 16]

现在,在这四个区间上做数据聚合也是一样的道理了:对于区间1,是对28,29,30,31,1这五天的值求和(这里只有1号是有值的),其余的区间也是同理,但需要注意是左开右闭。所以到这里,上面“莫名其妙”的代码和结果就好理解了。复制代码和结果如下:

ts_5d_rightclosed = ts.resample('5D', closed='right').sum()
print(ts_5d_rightclosed)

#### Outputs ####
2017-12-27   1
2018-01-01  20
2018-01-06  45
2018-01-11  12
Freq: 5D, dtype: int32

理解了clsoed的意义以后,再来理解label就so easy了。由注释可知,label的默认值是left。下面在closed='right'的基础上,将label设置为right:

ts_5d_rightclosed_rightlable = ts.resample('5D', closed='right', label='right').sum()
print(ts_5d_rightclosed_rightlable)

#### Outputs ####
2018-01-01   1
2018-01-06  20
2018-01-11  45
2018-01-16  12
Freq: 5D, dtype: int32

于label为left相比,二者结果的异同点如下:

  • 相同点:一样是四个区间,每个区间的聚合的值是一样的
  • 不同点:每个区间的索引不同

不难发现,label为left的时候,就以区间左边的那个日期作为索引;label,就以区间的右边那个日期作为索引。

综上,我们可以总结一下closed和label的用法和意义了:

  • closed:划分区间的依据,left会划成左闭右开区间;right会划分成左开右闭的区间。一般来说,closed为right的时候,区间会比为left的时候多一个。区间划分完毕,聚合运算就在这个区间内执行。
  • label:划分区间完毕,根据label的不同,区间的索引就不同。如果label为left,则区间左边的日期作为索引;如果label为right,则区间右边的日期作为索引。

升采样

创建一个时间序列,起始日期是2018/01/01,一共2天,每天对应的数值分别是1到2:

rng = pd.date_range('20180101', periods=2)
ts = pd.Series(np.arange(1,2), index=rng)

print(ts)

#### Outputs ####
2018-01-01  1
2018-01-02  2
Freq: D, dtype: int32

升采样就不涉及到closed和label的值,也就是会忽略(筒子们可以验证一下),所以我们在使用的时候无需设置这两个值。对于升采样,前面也提到,主要是涉及到值的填充。有下面的四种填充方法(实际是三种):

  • 不填充。那么对应无值的地方,用NaN代替。对应的方法是asfreq。
  • 用前值填充。用前面的值填充无值的地方。对应的方法是ffill或者pad。这里方便记忆,ffill的第一个f是代表forward,向前的意思
  • 用后值填充。对应的方法是bfill,b代表back。

下面是一个例子:

ts_6h_asfreq = ts.resample('6H').asfreq()
print(ts_6h_asfreq)

ts_6h_pad = ts.resample('6H').pad()
print(ts_6h_pad)

ts_6h_ffill = ts.resample('6H').ffill()
print(ts_6h_ffill)

ts_6h_bfill = ts.resample('6H').bfill()
print(ts_6h_bfill)

#### Outputs ####
2018-01-01 00:00:00  1.0
2018-01-01 06:00:00  NaN
2018-01-01 12:00:00  NaN
2018-01-01 18:00:00  NaN
2018-01-02 00:00:00  2.0
Freq: 6H, dtype: float64
2018-01-01 00:00:00  1
2018-01-01 06:00:00  1
2018-01-01 12:00:00  1
2018-01-01 18:00:00  1
2018-01-02 00:00:00  2
Freq: 6H, dtype: int32
2018-01-01 00:00:00  1
2018-01-01 06:00:00  1
2018-01-01 12:00:00  1
2018-01-01 18:00:00  1
2018-01-02 00:00:00  2
Freq: 6H, dtype: int32
2018-01-01 00:00:00  1
2018-01-01 06:00:00  2
2018-01-01 12:00:00  2
2018-01-01 18:00:00  2
2018-01-02 00:00:00  2
Freq: 6H, dtype: int32

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python和php通信乱码问题解决方法
Apr 15 Python
浅谈Python中chr、unichr、ord字符函数之间的对比
Jun 16 Python
在python的类中动态添加属性与生成对象
Sep 17 Python
python如何拆分含有多种分隔符的字符串
Mar 20 Python
详谈Python中列表list,元祖tuple和numpy中的array区别
Apr 18 Python
python2与python3共存问题的解决方法
Sep 18 Python
修改python plot折线图的坐标轴刻度方法
Dec 13 Python
python TF-IDF算法实现文本关键词提取
May 29 Python
Python计算一个点到所有点的欧式距离实现方法
Jul 04 Python
python实现的分析并统计nginx日志数据功能示例
Dec 21 Python
解决pycharm修改代码后第一次运行不生效的问题
Feb 06 Python
Python使用OpenCV和K-Means聚类对毕业照进行图像分割
Jun 11 Python
Python3的unicode编码转换成中文的问题及解决方案
Dec 10 #Python
用OpenCV将视频分解成单帧图片,图片合成视频示例
Dec 10 #Python
python3 webp转gif格式的实现示例
Dec 10 #Python
Spring Cloud Feign高级应用实例详解
Dec 10 #Python
flask 使用 flask_apscheduler 做定时循环任务的实现
Dec 10 #Python
使用opencv将视频帧转成图片输出
Dec 10 #Python
django框架cookie和session用法实例详解
Dec 10 #Python
You might like
中英文字符串翻转函数
2008/12/09 PHP
PHP编程文件处理类SplFileObject和SplFileInfo用法实例分析
2017/07/22 PHP
php求斐波那契数的两种实现方式【递归与递推】
2019/09/09 PHP
PHP7 list() 函数修改
2021/03/09 PHP
经验几则 推荐
2006/09/05 Javascript
JavaScript中的作用域链和闭包
2012/06/30 Javascript
jQuery实现瀑布流布局详解(PC和移动端)
2020/09/01 Javascript
JavaScript地理位置信息API
2016/06/11 Javascript
一个炫酷的Bootstrap导航菜单
2016/12/28 Javascript
js使用generator函数同步执行ajax任务
2017/09/05 Javascript
bmob js-sdk 在vue中的使用教程
2018/01/21 Javascript
vue实现模态框的通用写法推荐
2018/02/26 Javascript
微信小程序实现的日期午别医生排班表功能示例
2019/01/09 Javascript
ES6中Set和Map用法实例详解
2020/03/02 Javascript
Javascript执行上下文顺序的深入讲解
2020/11/04 Javascript
[44:50]2018DOTA2亚洲邀请赛 4.1 小组赛 A组 TNC vs VG
2018/04/02 DOTA
[01:05:00]2018国际邀请赛 表演赛 Pain vs OpenAI
2018/08/24 DOTA
[00:37]食人魔魔法师轮盘吉兆顺应全新至宝将拥有额外款式
2019/12/19 DOTA
在Python的Flask框架下使用sqlalchemy库的简单教程
2015/04/09 Python
Python实现连接postgresql数据库的方法分析
2017/12/27 Python
解决python 无法加载downsample模型的问题
2018/10/25 Python
django 配置阿里云OSS存储media文件的例子
2019/08/20 Python
python2与python3爬虫中get与post对比解析
2019/09/18 Python
python的scipy实现插值的示例代码
2019/11/12 Python
python+opencv实现移动侦测(帧差法)
2020/03/20 Python
使用卷积神经网络(CNN)做人脸识别的示例代码
2020/03/27 Python
python中append函数用法讲解
2020/12/11 Python
Python读取pdf表格写入excel的方法
2021/01/22 Python
英文翻译的自我评价语句
2013/10/04 职场文书
汽车运用工程系毕业生自荐信
2013/12/27 职场文书
自动化专业个人求职信范文
2013/12/30 职场文书
演讲稿怎么写
2014/01/07 职场文书
车贷收入证明范本
2014/01/09 职场文书
主题实践活动总结
2014/05/08 职场文书
暑假生活随笔
2015/08/15 职场文书
Python编解码问题及文本文件处理方法详解
2021/06/20 Python