OpenCV 轮廓检测的实现方法


Posted in Python onJuly 03, 2019

轮廓概述

  1. 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。 
  2. 为了更加准确,要使用二值化图像。在寻找轮廓之前,要进行阈值化处理或者 Canny 边界检测。 
  3. 查找轮廓的函数会修改原始图像。如果你在找到轮廓之后还想使用原始图像的话,你应该将原始图像存储到其他变量中。 
  4. 在 OpenCV 中,查找轮廓就像在黑色背景中超白色物体,要找的物体应该是白色而背景应该是黑色。

轮廓检测的作用:

1.可以检测图图像或者视频中物体的轮廓
2.计算多边形边界,形状逼近和计算感兴趣区域

先看一个较为简单的轮廓检测:

import cv2
import numpy as np
# 创建一个200*200的黑色空白图像
img = np.zeros((200, 200), dtype=np.uint8)
# 利用numpy数组在切片上赋值的功能放置一个白色方块
img[50:150, 50:150] = 255

# 对图像进行二值化操作
# threshold(src, thresh, maxval, type, dst=None)
# src是输入数组,thresh是阈值的具体值,maxval是type取THRESH_BINARY或者THRESH_BINARY_INV时的最大值
# type有5种类型,这里取0: THRESH_BINARY ,当前点值大于阈值时,取maxval,也就是前一个参数,否则设为0
# 该函数第一个返回值是阈值的值,第二个是阈值化后的图像
ret, thresh = cv2.threshold(img, 127, 255, 0)

# findContours()有三个参数:输入图像,层次类型和轮廓逼近方法
# 该函数会修改原图像,建议使用img.copy()作为输入
# 由函数返回的层次树很重要,cv2.RETR_TREE会得到图像中轮廓的整体层次结构,以此来建立轮廓之间的‘关系'。
# 如果只想得到最外面的轮廓,可以使用cv2.RETE_EXTERNAL。这样可以消除轮廓中其他的轮廓,也就是最大的集合
# 该函数有三个返回值:修改后的图像,图像的轮廓,它们的层次
image, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.drawContours(color, contours, -1, (0, 255, 0), 2)
cv2.imshow("contours", color)
cv2.waitKey()
cv2.destroyAllWindows()

OpenCV 轮廓检测的实现方法

上面是找到一个正方形的轮廓,下面看如何找到不规则的多边形轮廓:

import cv2
import numpy as np

# pyrDown():brief Blurs an image and downsamples it.
# 将图像高斯平滑,然后进行降采样
img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))
# 依然是二值化操作
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
# 计算图像的轮廓
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for c in contours:
  # find bounding box coordinates
  # 先计算出一个简单的边界狂,也就是一个矩形啦
  # 就是将轮廓信息转换为(x,y)坐标,并加上矩形的高度和宽度
  x, y, w, h = cv2.boundingRect(c)
  # 画出该矩形
  cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)

  # find minimum area
  # 然后计算包围目标的最小矩形区域
  # 这里先计算出最小矩形区域,然后计算区域的顶点,此时顶点坐标是浮点型,但是像素坐标是整数
  # 需要将浮点型转换成矩形
  rect = cv2.minAreaRect(c)
  box = cv2.boxPoints(rect)
  box = np.int0(box)
  # draw contours
  # 画出最小矩形
  # drawContours()也会修改源图像
  # 第二个参数保存轮廓的数组,也就是保存着很多轮廓
  # 第三个参数是要绘制的轮廓数组的索引:-1是绘制所有的轮廓,否则只绘制[box]中指定的轮廓
  # 颜色和thickness(密度,就是粗细)放在最后两个参数
  cv2.drawContours(img, [box], 0, (0, 0, 255), 3)

  # calculate center and radius of minimum enclosing circle
  # 最后检查的边界轮廓为最小闭圆
  # minEnclosingCircle()会返回一个二元数组,第一个是圆心坐标组成的元祖,第二个元素是元的半径
  (x, y), radius = cv2.minEnclosingCircle(c)
  # cast to integers
  center = (int(x), int(y))
  radius = int(radius)
  # draw the circle
  img = cv2.circle(img, center, radius, (255, 0, 0), 3)

# 绘制轮廓
cv2.drawContours(img, contours, -1, (255, 0, 0), 1)
cv2.imshow("contours", img)

cv2.waitKey()
cv2.destroyAllWindows()

OpenCV 轮廓检测的实现方法

凸轮廓与Douglas-Peucker算法

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))

ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
# 创建与源图像一样大小的矩阵
black = cv2.cvtColor(np.zeros((img.shape[1], img.shape[0]), dtype=np.uint8), cv2.COLOR_GRAY2BGR)

image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for cnt in contours:
  # 得到轮廓的周长作为参考
  epsilon = 0.01 * cv2.arcLength(cnt,True)
  # approxPolyDP()用来计算近似的多边形框。有三个参数
  # cnt为轮廓,epsilon为ε——表示源轮廓与近似多边形的最大差值,越小越接近
  # 第三个是布尔标记,用来表示这个多边形是否闭合
  approx = cv2.approxPolyDP(cnt,epsilon,True)
  # convexHull()可以从轮廓获取凸形状
  hull = cv2.convexHull(cnt)
  # 源图像轮廓-绿色
  cv2.drawContours(black, [cnt], -1, (0, 255, 0), 2)
  # 近似多边形-蓝色
  cv2.drawContours(black, [approx], -1, (255, 0, 0), 2)
  # 凸包-红色
  cv2.drawContours(black, [hull], -1, (0, 0, 255), 2)

cv2.imshow("hull", black)
cv2.waitKey()
cv2.destroyAllWindows()

OpenCV 轮廓检测的实现方法

本来也有疑问,有了一个精确的轮廓,为什么还需要一个近似的多边形?

书中给出答案,近似多边形是由一组直线构成,这样可以便于后续的操作和处理。

想来也是,直线构成的区域总是比无限个曲率的曲线构成的区域方便处理。

直线和圆检测

直线检测可以通过HoughLinesP函数完成,HoughLinesP是标准Hough变换经过优化,使用概率Hough变换。

import cv2
import numpy as np

img = cv2.imread('lines.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,120)
# 最小直线长度,小于该长度会被消除
minLineLength = 20
# 最大线段间隙,一条直线的间隙长度大于这个值会被认为是两条直线
maxLineGap = 5
# HoughLinesP()会接受一个由Canny边缘检测滤波器处理过的单通道二值图像
# 不一定需要Canny滤波器,但是输入是去噪且只有边缘的图像,效果会很好
# 第一个参数是输入图像
# 第二、第三个参数是线段的几何表示rho和theta,一般取1和np.pi/180
# 第四个参数是阈值,低于该阈值的直线会被忽略
# 第五第六已经解释
lines = cv2.HoughLinesP(edges,1,np.pi/180,20,minLineLength,maxLineGap)
for x1,y1,x2,y2 in lines[0]:
  cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)

cv2.imshow("edges", edges)
cv2.imshow("lines", img)
cv2.waitKey()
cv2.destroyAllWindows()

圆检测可以通过HoughCircles函数检测。

import cv2
import numpy as np

planets = cv2.imread('planet_glow.jpg')
gray_img = cv2.cvtColor(planets, cv2.COLOR_BGR2GRAY)
img = cv2.medianBlur(gray_img, 5)
cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

# 与直线检测类似,需要圆心距的最小距离和圆的最小以及最大半径
circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,120,param1=100,param2=30,minRadius=0,maxRadius=0)

circles = np.uint16(np.around(circles))

for i in circles[0,:]:
  # draw the outer circle
  cv2.circle(planets,(i[0],i[1]),i[2],(0,255,0),2)
  # draw the center of the circle
  cv2.circle(planets,(i[0],i[1]),2,(0,0,255),3)

cv2.imwrite("planets_circles.jpg", planets)
cv2.imshow("HoughCirlces", planets)
cv2.waitKey()
cv2.destroyAllWindows()

有一个问题,该方法检测出来的第二行的第一个星球的圆检测与书中不一样。

OpenCV 轮廓检测的实现方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
haskell实现多线程服务器实例代码
Nov 26 Python
Python中decorator使用实例
Apr 14 Python
使用beaker让Facebook的Bottle框架支持session功能
Apr 23 Python
Python中Collections模块的Counter容器类使用教程
May 31 Python
常见的python正则用法实例讲解
Jun 21 Python
Python之文字转图片方法
May 10 Python
正则给header的冒号两边参数添加单引号(Python请求用)
Aug 09 Python
opencv3/C++ 平面对象识别&透视变换方式
Dec 11 Python
解决Python中报错TypeError: must be str, not bytes问题
Apr 07 Python
python爬虫容易学吗
Jun 02 Python
python实现三壶谜题的示例详解
Nov 02 Python
python海龟绘图之画国旗实例代码
Nov 11 Python
python实现文本进度条 程序进度条 加载进度条 单行刷新功能
Jul 03 #Python
Python Pandas数据结构简单介绍
Jul 03 #Python
如何通过雪花算法用Python实现一个简单的发号器
Jul 03 #Python
Python实现个人微信号自动监控告警的示例
Jul 03 #Python
python pandas模块基础学习详解
Jul 03 #Python
python将excel转换为csv的代码方法总结
Jul 03 #Python
pandas实现to_sql将DataFrame保存到数据库中
Jul 03 #Python
You might like
重置版战役片段
2020/04/09 魔兽争霸
php截取html字符串及自动补全html标签的方法
2015/01/15 PHP
php生成唯一的订单函数分享
2015/02/02 PHP
Yii2框架实现登陆添加验证码功能示例
2018/07/12 PHP
jquery 打开窗口返回值实现代码
2010/03/04 Javascript
jQuery Autocomplete自动完成插件
2010/07/17 Javascript
jQuery代码优化 事件委托篇
2011/11/01 Javascript
javascript错误的认识不用关心内存管理
2012/12/15 Javascript
jQuery实现鼠标移到元素上动态提示消息框效果
2013/10/20 Javascript
JavaScript设计模式之观察者模式(发布者-订阅者模式)
2014/09/24 Javascript
js中键盘事件实例简析
2015/01/10 Javascript
点评js异步加载的4种方式
2015/12/22 Javascript
jquery trigger函数执行两次的解决方法
2016/02/29 Javascript
一道优雅面试题分析js中fn()和return fn()的区别
2016/07/05 Javascript
xmlplus组件设计系列之文本框(TextBox)(3)
2017/05/03 Javascript
微信小程序登录时如何获取input框中的内容
2019/12/04 Javascript
Vue filter 过滤当前时间 实现实时更新效果
2019/12/20 Javascript
[02:37]2018DOTA2亚洲邀请赛赛前采访-EG篇
2018/04/03 DOTA
Python实现的批量下载RFC文档
2015/03/10 Python
编写Python爬虫抓取暴走漫画上gif图片的实例分享
2016/04/20 Python
从零开始学Python第八周:详解网络编程基础(socket)
2016/12/14 Python
对python当中不在本路径的py文件的引用详解
2018/12/15 Python
Python使用正则表达式分割字符串的实现方法
2019/07/16 Python
python中通过selenium简单操作及元素定位知识点总结
2019/09/10 Python
Django-migrate报错问题解决方案
2020/04/21 Python
Python QTimer实现多线程及QSS应用过程解析
2020/07/11 Python
html5实现九宫格抽奖可固定抽中某项奖品
2020/06/15 HTML / CSS
匡威帆布鞋美国官网:Converse美国
2016/08/22 全球购物
Feelunique德国官方网站:欧洲最大的在线美容零售商
2019/07/20 全球购物
递归计算如下递归函数的值(斐波拉契)
2012/02/04 面试题
介绍一下JMS编程步骤
2015/09/22 面试题
大学毕业生工作的自我评价
2013/10/01 职场文书
成人继续教育实施方案
2014/03/01 职场文书
校庆团日活动总结
2014/08/28 职场文书
毕业生代领毕业材料的授权委托书
2014/09/29 职场文书
关于远足的感想
2015/08/10 职场文书