基于ID3决策树算法的实现(Python版)


Posted in Python onMay 31, 2017

实例如下:

# -*- coding:utf-8 -*-

from numpy import *
import numpy as np
import pandas as pd
from math import log
import operator

#计算数据集的香农熵
def calcShannonEnt(dataSet):
  numEntries=len(dataSet)
  labelCounts={}
  #给所有可能分类创建字典
  for featVec in dataSet:
    currentLabel=featVec[-1]
    if currentLabel not in labelCounts.keys():
      labelCounts[currentLabel]=0
    labelCounts[currentLabel]+=1
  shannonEnt=0.0
  #以2为底数计算香农熵
  for key in labelCounts:
    prob = float(labelCounts[key])/numEntries
    shannonEnt-=prob*log(prob,2)
  return shannonEnt


#对离散变量划分数据集,取出该特征取值为value的所有样本
def splitDataSet(dataSet,axis,value):
  retDataSet=[]
  for featVec in dataSet:
    if featVec[axis]==value:
      reducedFeatVec=featVec[:axis]
      reducedFeatVec.extend(featVec[axis+1:])
      retDataSet.append(reducedFeatVec)
  return retDataSet

#对连续变量划分数据集,direction规定划分的方向,
#决定是划分出小于value的数据样本还是大于value的数据样本集
def splitContinuousDataSet(dataSet,axis,value,direction):
  retDataSet=[]
  for featVec in dataSet:
    if direction==0:
      if featVec[axis]>value:
        reducedFeatVec=featVec[:axis]
        reducedFeatVec.extend(featVec[axis+1:])
        retDataSet.append(reducedFeatVec)
    else:
      if featVec[axis]<=value:
        reducedFeatVec=featVec[:axis]
        reducedFeatVec.extend(featVec[axis+1:])
        retDataSet.append(reducedFeatVec)
  return retDataSet

#选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet,labels):
  numFeatures=len(dataSet[0])-1
  baseEntropy=calcShannonEnt(dataSet)
  bestInfoGain=0.0
  bestFeature=-1
  bestSplitDict={}
  for i in range(numFeatures):
    featList=[example[i] for example in dataSet]
    #对连续型特征进行处理
    if type(featList[0]).__name__=='float' or type(featList[0]).__name__=='int':
      #产生n-1个候选划分点
      sortfeatList=sorted(featList)
      splitList=[]
      for j in range(len(sortfeatList)-1):
        splitList.append((sortfeatList[j]+sortfeatList[j+1])/2.0)

      bestSplitEntropy=10000
      slen=len(splitList)
      #求用第j个候选划分点划分时,得到的信息熵,并记录最佳划分点
      for j in range(slen):
        value=splitList[j]
        newEntropy=0.0
        subDataSet0=splitContinuousDataSet(dataSet,i,value,0)
        subDataSet1=splitContinuousDataSet(dataSet,i,value,1)
        prob0=len(subDataSet0)/float(len(dataSet))
        newEntropy+=prob0*calcShannonEnt(subDataSet0)
        prob1=len(subDataSet1)/float(len(dataSet))
        newEntropy+=prob1*calcShannonEnt(subDataSet1)
        if newEntropy<bestSplitEntropy:
          bestSplitEntropy=newEntropy
          bestSplit=j
      #用字典记录当前特征的最佳划分点
      bestSplitDict[labels[i]]=splitList[bestSplit]
      infoGain=baseEntropy-bestSplitEntropy
    #对离散型特征进行处理
    else:
      uniqueVals=set(featList)
      newEntropy=0.0
      #计算该特征下每种划分的信息熵
      for value in uniqueVals:
        subDataSet=splitDataSet(dataSet,i,value)
        prob=len(subDataSet)/float(len(dataSet))
        newEntropy+=prob*calcShannonEnt(subDataSet)
      infoGain=baseEntropy-newEntropy
    if infoGain>bestInfoGain:
      bestInfoGain=infoGain
      bestFeature=i
  #若当前节点的最佳划分特征为连续特征,则将其以之前记录的划分点为界进行二值化处理
  #即是否小于等于bestSplitValue
  if type(dataSet[0][bestFeature]).__name__=='float' or type(dataSet[0][bestFeature]).__name__=='int':
    bestSplitValue=bestSplitDict[labels[bestFeature]]
    labels[bestFeature]=labels[bestFeature]+'<='+str(bestSplitValue)
    for i in range(shape(dataSet)[0]):
      if dataSet[i][bestFeature]<=bestSplitValue:
        dataSet[i][bestFeature]=1
      else:
        dataSet[i][bestFeature]=0
  return bestFeature

#特征若已经划分完,节点下的样本还没有统一取值,则需要进行投票
def majorityCnt(classList):
  classCount={}
  for vote in classList:
    if vote not in classCount.keys():
      classCount[vote]=0
    classCount[vote]+=1
  return max(classCount)

#主程序,递归产生决策树
def createTree(dataSet,labels,data_full,labels_full):
  classList=[example[-1] for example in dataSet]
  if classList.count(classList[0])==len(classList):
    return classList[0]
  if len(dataSet[0])==1:
    return majorityCnt(classList)
  bestFeat=chooseBestFeatureToSplit(dataSet,labels)
  bestFeatLabel=labels[bestFeat]
  myTree={bestFeatLabel:{}}
  featValues=[example[bestFeat] for example in dataSet]
  uniqueVals=set(featValues)
  if type(dataSet[0][bestFeat]).__name__=='str':
    currentlabel=labels_full.index(labels[bestFeat])
    featValuesFull=[example[currentlabel] for example in data_full]
    uniqueValsFull=set(featValuesFull)
  del(labels[bestFeat])
  #针对bestFeat的每个取值,划分出一个子树。
  for value in uniqueVals:
    subLabels=labels[:]
    if type(dataSet[0][bestFeat]).__name__=='str':
      uniqueValsFull.remove(value)
    myTree[bestFeatLabel][value]=createTree(splitDataSet\
     (dataSet,bestFeat,value),subLabels,data_full,labels_full)
  if type(dataSet[0][bestFeat]).__name__=='str':
    for value in uniqueValsFull:
      myTree[bestFeatLabel][value]=majorityCnt(classList)
  return myTree

import matplotlib.pyplot as plt
decisionNode=dict(boxstyle="sawtooth",fc="0.8")
leafNode=dict(boxstyle="round4",fc="0.8")
arrow_args=dict(arrowstyle="<-")


#计算树的叶子节点数量
def getNumLeafs(myTree):
  numLeafs=0
  firstSides = list(myTree.keys())
  firstStr=firstSides[0]
  secondDict=myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      numLeafs+=getNumLeafs(secondDict[key])
    else: numLeafs+=1
  return numLeafs

#计算树的最大深度
def getTreeDepth(myTree):
  maxDepth=0
  firstSides = list(myTree.keys())
  firstStr=firstSides[0]
  secondDict=myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      thisDepth=1+getTreeDepth(secondDict[key])
    else: thisDepth=1
    if thisDepth>maxDepth:
      maxDepth=thisDepth
  return maxDepth

#画节点
def plotNode(nodeTxt,centerPt,parentPt,nodeType):
  createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords='axes fraction',\
  xytext=centerPt,textcoords='axes fraction',va="center", ha="center",\
  bbox=nodeType,arrowprops=arrow_args)

#画箭头上的文字
def plotMidText(cntrPt,parentPt,txtString):
  lens=len(txtString)
  xMid=(parentPt[0]+cntrPt[0])/2.0-lens*0.002
  yMid=(parentPt[1]+cntrPt[1])/2.0
  createPlot.ax1.text(xMid,yMid,txtString)

def plotTree(myTree,parentPt,nodeTxt):
  numLeafs=getNumLeafs(myTree)
  depth=getTreeDepth(myTree)
  firstSides = list(myTree.keys())
  firstStr=firstSides[0]
  cntrPt=(plotTree.x0ff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.y0ff)
  plotMidText(cntrPt,parentPt,nodeTxt)
  plotNode(firstStr,cntrPt,parentPt,decisionNode)
  secondDict=myTree[firstStr]
  plotTree.y0ff=plotTree.y0ff-1.0/plotTree.totalD
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      plotTree(secondDict[key],cntrPt,str(key))
    else:
      plotTree.x0ff=plotTree.x0ff+1.0/plotTree.totalW
      plotNode(secondDict[key],(plotTree.x0ff,plotTree.y0ff),cntrPt,leafNode)
      plotMidText((plotTree.x0ff,plotTree.y0ff),cntrPt,str(key))
  plotTree.y0ff=plotTree.y0ff+1.0/plotTree.totalD

def createPlot(inTree):
  fig=plt.figure(1,facecolor='white')
  fig.clf()
  axprops=dict(xticks=[],yticks=[])
  createPlot.ax1=plt.subplot(111,frameon=False,**axprops)
  plotTree.totalW=float(getNumLeafs(inTree))
  plotTree.totalD=float(getTreeDepth(inTree))
  plotTree.x0ff=-0.5/plotTree.totalW
  plotTree.y0ff=1.0
  plotTree(inTree,(0.5,1.0),'')
  plt.show()

df=pd.read_csv('watermelon_4_3.csv')
data=df.values[:,1:].tolist()
data_full=data[:]
labels=df.columns.values[1:-1].tolist()
labels_full=labels[:]
myTree=createTree(data,labels,data_full,labels_full)
print(myTree)
createPlot(myTree)

最终结果如下:

{'texture': {'blur': 0, 'little_blur': {'touch': {'soft_stick': 1, 'hard_smooth': 0}}, 'distinct': {'density<=0.38149999999999995': {0: 1, 1: 0}}}}

得到的决策树如下:

基于ID3决策树算法的实现(Python版)

参考资料:

《机器学习实战》

《机器学习》周志华著

以上这篇基于ID3决策树算法的实现(Python版)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
CentOS中使用virtualenv搭建python3环境
Jun 08 Python
pycharm 配置远程解释器的方法
Oct 28 Python
Ubuntu下升级 python3.7.1流程备忘(推荐)
Dec 10 Python
python解压TAR文件至指定文件夹的实例
Jun 10 Python
python3使用print打印带颜色的字符串代码实例
Aug 22 Python
使用Python进行防病毒免杀解析
Dec 13 Python
Tensorflow限制CPU个数实例
Feb 06 Python
Python bytes string相互转换过程解析
Mar 05 Python
python程序输出无内容的解决方式
Apr 09 Python
python用Tkinter做自己的中文代码编辑器
Sep 07 Python
python爬虫今日热榜数据到txt文件的源码
Feb 23 Python
python操作xlsx格式文件并读取
Jun 02 Python
Python基础知识_浅谈用户交互
May 31 #Python
python数据类型_字符串常用操作(详解)
May 30 #Python
python数据类型_元组、字典常用操作方法(介绍)
May 30 #Python
node.js获取参数的常用方法(总结)
May 29 #Python
老生常谈python函数参数的区别(必看篇)
May 29 #Python
Python进阶_关于命名空间与作用域(详解)
May 29 #Python
浅谈对yield的初步理解
May 29 #Python
You might like
PHP动态页生成静态页的3种常用方法
2014/11/13 PHP
PHP使用GD库输出汉字的方法【测试可用】
2016/11/10 PHP
PHP实现的一致性Hash算法详解【分布式算法】
2018/03/31 PHP
php进行md5加密简单实例方法
2019/09/19 PHP
ThinkPHP 框架实现的读取excel导入数据库操作示例
2020/04/14 PHP
学习YUI.Ext 第七天--关于View&amp;JSONView
2007/03/10 Javascript
jQuery总体架构的理解分析
2011/03/07 Javascript
将查询条件的input、select清空
2014/01/14 Javascript
jquery获取复选框被选中的值
2014/04/10 Javascript
jQuery Ajax和getJSON获取后台普通json数据和层级json数据用法分析
2016/06/08 Javascript
很棒的Bootstrap选项卡切换效果
2016/07/01 Javascript
javascript验证香港身份证的格式或真实性
2017/02/07 Javascript
js实现三级联动效果(简单易懂)
2017/03/27 Javascript
Vue中使用clipboard实现复制功能
2018/09/05 Javascript
微信小程序使用scroll-view标签实现自动滑动到底部功能的实例代码
2018/11/09 Javascript
基于JS实现一个随机生成验证码功能
2019/05/29 Javascript
微信小程序(订阅消息)功能
2019/10/25 Javascript
Vue数组响应式操作及高阶函数使用代码详解
2020/08/01 Javascript
Python 检查数组元素是否存在类似PHP isset()方法
2014/10/14 Python
Python中操作mysql的pymysql模块详解
2016/09/13 Python
用Python登录好友QQ空间点赞的示例代码
2017/11/04 Python
python xlsxwriter库生成图表的应用示例
2018/03/16 Python
python获取文件真实链接的方法,针对于302返回码
2018/05/14 Python
Python3实现对列表按元组指定列进行排序的方法分析
2018/12/22 Python
python实现简单日期工具类
2019/04/24 Python
Python 生成器,迭代,yield关键字,send()传参给yield语句操作示例
2019/10/12 Python
Python TKinter如何自动关闭主窗口
2020/02/26 Python
利用python实现平稳时间序列的建模方式
2020/06/03 Python
软件测试面试题
2015/10/21 面试题
致跳高运动员广播稿
2014/01/13 职场文书
高一学生期末评语
2014/04/25 职场文书
廉洁校园实施方案
2014/05/25 职场文书
2014年纳税评估工作总结
2014/12/23 职场文书
《确定位置》教学反思
2016/02/18 职场文书
2016年教师师德师风承诺书
2016/03/25 职场文书
浅谈redis五大数据结构和使用场景
2021/04/12 Redis