python实用代码片段收集贴


Posted in Python onJune 03, 2015

获取一个类的所有子类

def itersubclasses(cls, _seen=None):

    """Generator over all subclasses of a given class in depth first order."""

    if not isinstance(cls, type):

        raise TypeError(_('itersubclasses must be called with '

                          'new-style classes, not %.100r') % cls)

    _seen = _seen or set()

    try:

        subs = cls.__subclasses__()

    except TypeError:   # fails only when cls is type

        subs = cls.__subclasses__(cls)

    for sub in subs:

        if sub not in _seen:

            _seen.add(sub)

            yield sub

            for sub in itersubclasses(sub, _seen):

                yield sub

简单的线程配合

import threading

is_done = threading.Event()

consumer = threading.Thread(

    target=self.consume_results,

    args=(key, self.task, runner.result_queue, is_done))

consumer.start()

self.duration = runner.run(

        name, kw.get("context", {}), kw.get("args", {}))

is_done.set()

consumer.join() #主线程堵塞,直到consumer运行结束

多说一点,threading.Event()也可以被替换为threading.Condition(),condition有notify(), wait(), notifyAll()。解释如下:
The wait() method releases the lock, and then blocks until it is awakened by a notify() or notifyAll() call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The notifyAll() method wakes up all threads waiting for the condition variable.

Note: the notify() and notifyAll() methods don't release the lock; this means that the thread or threads awakened will not return from their wait() call immediately, but only when the thread that called notify() or notifyAll() finally relinquishes ownership of the lock.
# Consume one item

cv.acquire()

while not an_item_is_available():

    cv.wait()

get_an_available_item()

cv.release()

# Produce one item

cv.acquire()

make_an_item_available()

cv.notify()

cv.release()

计算运行时间

class Timer(object):

    def __enter__(self):

        self.error = None

        self.start = time.time()

        return self

    def __exit__(self, type, value, tb):

        self.finish = time.time()

        if type:

            self.error = (type, value, tb)

    def duration(self):

        return self.finish - self.start

with Timer() as timer:

    func()

return timer.duration()

元类

__new__()方法接收到的参数依次是:
当前准备创建的类的对象;
类的名字;
类继承的父类集合;
类的方法集合;

class ModelMetaclass(type):

    def __new__(cls, name, bases, attrs):

        if name=='Model':

            return type.__new__(cls, name, bases, attrs)

        mappings = dict()

        for k, v in attrs.iteritems():

            if isinstance(v, Field):

                print('Found mapping: %s==>%s' % (k, v))

                mappings[k] = v

        for k in mappings.iterkeys():

            attrs.pop(k)

        attrs['__table__'] = name # 假设表名和类名一致

        attrs['__mappings__'] = mappings # 保存属性和列的映射关系

        return type.__new__(cls, name, bases, attrs)

class Model(dict):

    __metaclass__ = ModelMetaclass

    def __init__(self, **kw):

        super(Model, self).__init__(**kw)

    def __getattr__(self, key):

        try:

            return self[key]

        except KeyError:

            raise AttributeError(r"'Model' object has no attribute '%s'" % key)

    def __setattr__(self, key, value):

        self[key] = value

    def save(self):

        fields = []

        params = []

        args = []

        for k, v in self.__mappings__.iteritems():

            fields.append(v.name)

            params.append('?')

            args.append(getattr(self, k, None))

        sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))

        print('SQL: %s' % sql)

        print('ARGS: %s' % str(args))

class Field(object):

    def __init__(self, name, column_type):

        self.name = name

        self.column_type = column_type

    def __str__(self):

        return '<%s:%s>' % (self.__class__.__name__, self.name)

class StringField(Field):

    def __init__(self, name):

        super(StringField, self).__init__(name, 'varchar(100)')

class IntegerField(Field):

    def __init__(self, name):

        super(IntegerField, self).__init__(name, 'bigint')

class User(Model):

    # 定义类的属性到列的映射:

    id = IntegerField('id')

    name = StringField('username')

    email = StringField('email')

    password = StringField('password')

# 创建一个实例:

u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')

# 保存到数据库:

u.save()

输出如下:

Found model: User

Found mapping: email ==> <StringField:email>

Found mapping: password ==> <StringField:password>

Found mapping: id ==> <IntegerField:uid>

Found mapping: name ==> <StringField:username>

SQL: insert into User (password,email,username,uid) values (?,?,?,?)

ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]

SQLAlchemy简单使用

# 导入:

from sqlalchemy import Column, String, create_engine

from sqlalchemy.orm import sessionmaker

from sqlalchemy.ext.declarative import declarative_base

# 创建对象的基类:

Base = declarative_base()

# 定义User对象:

class User(Base):

    # 表的名字:

    __tablename__ = 'user'

    # 表的结构:

    id = Column(String(20), primary_key=True)

    name = Column(String(20))

# 初始化数据库连接:

engine = create_engine('mysql+mysqlconnector://root:password@localhost:3306/test') # '数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'

# 创建DBSession类型:

DBSession = sessionmaker(bind=engine)

# 创建新User对象:

new_user = User(id='5', name='Bob')

# 添加到session:

session.add(new_user)

# 提交即保存到数据库:

session.commit()

# 创建Query查询,filter是where条件,最后调用one()返回唯一行,如果调用all()则返回所有行:

user = session.query(User).filter(User.id=='5').one()

# 关闭session:

session.close()

WSGI简单使用和Web框架Flask的简单使用

from wsgiref.simple_server import make_server

def application(environ, start_response):

    start_response('200 OK', [('Content-Type', 'text/html')])

    return '<h1>Hello, web!</h1>'

# 创建一个服务器,IP地址为空,端口是8000,处理函数是application:

httpd = make_server('', 8000, application)

print "Serving HTTP on port 8000..."

# 开始监听HTTP请求:

httpd.serve_forever()

了解了WSGI框架,我们发现:其实一个Web App,就是写一个WSGI的处理函数,针对每个HTTP请求进行响应。
但是如何处理HTTP请求不是问题,问题是如何处理100个不同的URL。
一个最简单和最土的想法是从environ变量里取出HTTP请求的信息,然后逐个判断。

from flask import Flask

from flask import request

app = Flask(__name__)

@app.route('/', methods=['GET', 'POST'])

def home():

    return '<h1>Home</h1>'

@app.route('/signin', methods=['GET'])

def signin_form():

    return '''<form action="/signin" method="post">

              <p><input name="username"></p>

              <p><input name="password" type="password"></p>

              <p><button type="submit">Sign In</button></p>

              </form>'''

@app.route('/signin', methods=['POST'])

def signin():

    # 需要从request对象读取表单内容:

    if request.form['username']=='admin' and request.form['password']=='password':

        return '<h3>Hello, admin!</h3>'

    return '<h3>Bad username or password.</h3>'

if __name__ == '__main__':

    app.run()

格式化显示json

print(json.dumps(data, indent=4))

# 或者

import pprint

pprint.pprint(data)

实现类似Java或C中的枚举

#!/usr/bin/env python

# -*- coding: utf-8 -*-

import itertools

import sys

class ImmutableMixin(object):

    _inited = False

    def __init__(self):

        self._inited = True

    def __setattr__(self, key, value):

        if self._inited:

            raise Exception("unsupported action")

        super(ImmutableMixin, self).__setattr__(key, value)

class EnumMixin(object):

    def __iter__(self):

        for k, v in itertools.imap(lambda x: (x, getattr(self, x)), dir(self)):

            if not k.startswith('_'):

                yield v

class _RunnerType(ImmutableMixin, EnumMixin):

    SERIAL = "serial"

    CONSTANT = "constant"

    CONSTANT_FOR_DURATION = "constant_for_duration"

    RPS = "rps"

if __name__=="__main__":

    print _RunnerType.CONSTANT

创建文件时指定权限

import os

def write_to_file(path, contents, umask=None):

    """Write the given contents to a file

    :param path: Destination file

    :param contents: Desired contents of the file

    :param umask: Umask to set when creating this file (will be reset)

    """

    if umask:

        saved_umask = os.umask(umask)

    try:

        with open(path, 'w') as f:

            f.write(contents)

    finally:

        if umask:

            os.umask(saved_umask)

if __name__ == '__main__':

    write_to_file('/home/kong/tmp', 'test', 31)

    # Then you will see a file is created with permission 640.

    # Warning: If the file already exists, its permission will not be changed.

    # Note:For file, default all permission is 666, and 777 for directory.

多进程并发执行

import multiprocessing

import time

import os

def run(flag):

    print "flag: %s, sleep 2s in run" % flag

    time.sleep(2)

    print "%s exist" % flag

    return flag

if __name__ == '__main__':

    pool = multiprocessing.Pool(3)

    iter_result = pool.imap(run, xrange(6))

    print "sleep 5s\n\n"

    time.sleep(5)

    for i in range(6):

        try:

            result = iter_result.next(600)

        except multiprocessing.TimeoutError as e:

            raise

        print result

    pool.close()

    pool.join()

运行时自动填充函数参数

import decorator

def default_from_global(arg_name, env_name):

    def default_from_global(f, *args, **kwargs):

        id_arg_index = f.func_code.co_varnames.index(arg_name)

        args = list(args)

        if args[id_arg_index] is None:

            args[id_arg_index] = get_global(env_name)

            if not args[id_arg_index]:

                print("Missing argument: --%(arg_name)s" % {"arg_name": arg_name})

                return(1)

        return f(*args, **kwargs)

    return decorator.decorator(default_from_global)

# 如下是一个装饰器,可以用在需要自动填充参数的函数上。功能是:

# 如果没有传递函数的deploy_id参数,那么就从环境变量中获取(调用自定义的get_global函数)

with_default_deploy_id = default_from_global('deploy_id', ENV_DEPLOYMENT)   

嵌套装饰器

validator函数装饰func1,func1使用时接收参数(*arg, **kwargs),而func1又装饰func2(其实就是Rally中的scenario函数),给func2增加validators属性,是一个函数的列表,函数的接收参数config, clients, task。这些函数最终调用func1,传入参数(config, clients, task, *args, **kwargs),所以func1定义时参数是(config, clients, task, *arg, **kwargs) 
最终实现的效果是,func2有很多装饰器,每个都会接收自己的参数,做一些校验工作。

def validator(fn):

    """Decorator that constructs a scenario validator from given function.

    Decorated function should return ValidationResult on error.

    :param fn: function that performs validation

    :returns: rally scenario validator

    """

    def wrap_given(*args, **kwargs):

        """Dynamic validation decorator for scenario.

        :param args: the arguments of the decorator of the benchmark scenario

        ex. @my_decorator("arg1"), then args = ('arg1',)

        :param kwargs: the keyword arguments of the decorator of the scenario

        ex. @my_decorator(kwarg1="kwarg1"), then kwargs = {"kwarg1": "kwarg1"}

        """

        def wrap_validator(config, clients, task):

            return (fn(config, clients, task, *args, **kwargs) or

                    ValidationResult())

        def wrap_scenario(scenario):

            wrap_validator.permission = getattr(fn, "permission",

                                                consts.EndpointPermission.USER)

            if not hasattr(scenario, "validators"):

                scenario.validators = []

            scenario.validators.append(wrap_validator)

            return scenario

        return wrap_scenario

    return wrap_given

inspect库的一些常见用法

inspect.getargspec(func) 获取函数参数的名称和默认值,返回一个四元组(args, varargs, keywords, defaults),其中:
args是参数名称的列表;
varargs和keywords是*号和**号的变量名称;
defaults是参数默认值的列表;

inspect.getcallargs(func[, *args][, **kwds]) 绑定函数参数。返回绑定后函数的入参字典。

python中的私有属性和函数

Python把以两个或以上下划线字符开头且没有以两个或以上下划线结尾的变量当作私有变量。私有变量会在代码生成之前被转换为长格式(变为公有),这个过程叫"Private name mangling",如类A里的__private标识符将被转换为_A__private,但当类名全部以下划线命名的时候,Python就不再执行轧压。而且,虽然叫私有变量,仍然有可能被访问或修改(使用_classname__membername),所以, 总结如下:

无论是单下划线还是双下划线开头的成员,都是希望外部程序开发者不要直接使用这些成员变量和这些成员函数,只是双下划线从语法上能够更直接的避免错误的使用,但是如果按照_类名__成员名则依然可以访问到。单下划线的在动态调试时可能会方便一些,只要项目组的人都遵守下划线开头的成员不直接使用,那使用单下划线或许会更好。

Python 相关文章推荐
Python中在脚本中引用其他文件函数的实现方法
Jun 23 Python
详解MySQL数据类型int(M)中M的含义
Nov 20 Python
Python使用matplotlib绘制余弦的散点图示例
Mar 14 Python
wx.CheckBox创建复选框控件并响应鼠标点击事件
Apr 25 Python
Python 3.x基于Xml数据的Http请求方法
Dec 28 Python
python 使用turtule绘制递归图形(螺旋、二叉树、谢尔宾斯基三角形)
May 30 Python
Django基础知识 URL路由系统详解
Jul 18 Python
Django 导出项目依赖库到 requirements.txt过程解析
Aug 23 Python
Python 如何定义匿名或内联函数
Aug 01 Python
python 中关于pycharm选择运行环境的问题
Oct 31 Python
浅谈怎么给Python添加类型标注
Jun 08 Python
python井字棋游戏实现人机对战
Apr 28 Python
Perl中著名的Schwartzian转换问题解决实现
Jun 02 #Python
python通过ssh-powershell监控windows的方法
Jun 02 #Python
Python lxml模块安装教程
Jun 02 #Python
Python脚本文件打包成可执行文件的方法
Jun 02 #Python
python统计cpu利用率的方法
Jun 02 #Python
Python2.x中文乱码问题解决方法
Jun 02 #Python
python实现的守护进程(Daemon)用法实例
Jun 02 #Python
You might like
PHP读书笔记整理_结构语句详解
2016/07/01 PHP
得到文本框选中的文字,动态插入文字的js代码
2007/03/07 Javascript
Javascript 面试题随笔
2011/03/31 Javascript
jquery prop的使用介绍及与attr的区别
2013/12/19 Javascript
JavaScript实现页面5秒后自动跳转的方法
2015/04/16 Javascript
微信小程序 教程之wxapp视图容器 scroll-view
2016/10/19 Javascript
基于JavaScript实现拖动滑块效果
2017/02/16 Javascript
JavaScript中使用参数个数实现重载功能
2017/09/01 Javascript
如何解决.vue文件url引用文件的问题
2019/01/18 Javascript
详解Vue之父子组件传值
2019/04/01 Javascript
python client使用http post 到server端的代码
2013/02/10 Python
Python语言技巧之三元运算符使用介绍
2013/03/04 Python
Python中map,reduce,filter和sorted函数的使用方法
2015/08/17 Python
Python实现优先级队列结构的方法详解
2016/06/02 Python
Python实现多进程共享数据的方法分析
2017/12/04 Python
Python绘制3d螺旋曲线图实例代码
2017/12/20 Python
python中使用print输出中文的方法
2018/07/16 Python
python定时复制远程文件夹中所有文件
2019/04/30 Python
python查看文件大小和文件夹内容的方法
2019/07/08 Python
基于FME使用Python过程图解
2020/05/13 Python
使用python将微信image下.dat文件解密为.png的方法
2020/11/30 Python
Django+Django-Celery+Celery的整合实战
2021/01/20 Python
基于HTML5 FileSystem API的使用介绍
2013/04/24 HTML / CSS
英国袜子店:Sock Shop
2017/01/11 全球购物
shallow copy和deep copy的区别
2016/05/09 面试题
采购部岗位职责
2013/11/24 职场文书
财务管理职业生涯规划范文
2013/12/27 职场文书
餐饮收银员岗位职责
2014/02/07 职场文书
我的梦想演讲稿500字
2014/08/21 职场文书
焦裕禄精神心得体会
2014/09/02 职场文书
教师年终个人总结
2015/02/11 职场文书
小学校长开学致辞
2015/07/29 职场文书
《日月潭》教学反思
2016/02/20 职场文书
OpenCV-Python模板匹配人眼的实例
2021/06/08 Python
浅谈JavaScript浅拷贝和深拷贝
2021/11/07 Javascript
PostgreSQL 插入INSERT、删除DELETE、更新UPDATE、事务transaction
2022/04/12 PostgreSQL