python实用代码片段收集贴


Posted in Python onJune 03, 2015

获取一个类的所有子类

def itersubclasses(cls, _seen=None):

    """Generator over all subclasses of a given class in depth first order."""

    if not isinstance(cls, type):

        raise TypeError(_('itersubclasses must be called with '

                          'new-style classes, not %.100r') % cls)

    _seen = _seen or set()

    try:

        subs = cls.__subclasses__()

    except TypeError:   # fails only when cls is type

        subs = cls.__subclasses__(cls)

    for sub in subs:

        if sub not in _seen:

            _seen.add(sub)

            yield sub

            for sub in itersubclasses(sub, _seen):

                yield sub

简单的线程配合

import threading

is_done = threading.Event()

consumer = threading.Thread(

    target=self.consume_results,

    args=(key, self.task, runner.result_queue, is_done))

consumer.start()

self.duration = runner.run(

        name, kw.get("context", {}), kw.get("args", {}))

is_done.set()

consumer.join() #主线程堵塞,直到consumer运行结束

多说一点,threading.Event()也可以被替换为threading.Condition(),condition有notify(), wait(), notifyAll()。解释如下:
The wait() method releases the lock, and then blocks until it is awakened by a notify() or notifyAll() call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The notifyAll() method wakes up all threads waiting for the condition variable.

Note: the notify() and notifyAll() methods don't release the lock; this means that the thread or threads awakened will not return from their wait() call immediately, but only when the thread that called notify() or notifyAll() finally relinquishes ownership of the lock.
# Consume one item

cv.acquire()

while not an_item_is_available():

    cv.wait()

get_an_available_item()

cv.release()

# Produce one item

cv.acquire()

make_an_item_available()

cv.notify()

cv.release()

计算运行时间

class Timer(object):

    def __enter__(self):

        self.error = None

        self.start = time.time()

        return self

    def __exit__(self, type, value, tb):

        self.finish = time.time()

        if type:

            self.error = (type, value, tb)

    def duration(self):

        return self.finish - self.start

with Timer() as timer:

    func()

return timer.duration()

元类

__new__()方法接收到的参数依次是:
当前准备创建的类的对象;
类的名字;
类继承的父类集合;
类的方法集合;

class ModelMetaclass(type):

    def __new__(cls, name, bases, attrs):

        if name=='Model':

            return type.__new__(cls, name, bases, attrs)

        mappings = dict()

        for k, v in attrs.iteritems():

            if isinstance(v, Field):

                print('Found mapping: %s==>%s' % (k, v))

                mappings[k] = v

        for k in mappings.iterkeys():

            attrs.pop(k)

        attrs['__table__'] = name # 假设表名和类名一致

        attrs['__mappings__'] = mappings # 保存属性和列的映射关系

        return type.__new__(cls, name, bases, attrs)

class Model(dict):

    __metaclass__ = ModelMetaclass

    def __init__(self, **kw):

        super(Model, self).__init__(**kw)

    def __getattr__(self, key):

        try:

            return self[key]

        except KeyError:

            raise AttributeError(r"'Model' object has no attribute '%s'" % key)

    def __setattr__(self, key, value):

        self[key] = value

    def save(self):

        fields = []

        params = []

        args = []

        for k, v in self.__mappings__.iteritems():

            fields.append(v.name)

            params.append('?')

            args.append(getattr(self, k, None))

        sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))

        print('SQL: %s' % sql)

        print('ARGS: %s' % str(args))

class Field(object):

    def __init__(self, name, column_type):

        self.name = name

        self.column_type = column_type

    def __str__(self):

        return '<%s:%s>' % (self.__class__.__name__, self.name)

class StringField(Field):

    def __init__(self, name):

        super(StringField, self).__init__(name, 'varchar(100)')

class IntegerField(Field):

    def __init__(self, name):

        super(IntegerField, self).__init__(name, 'bigint')

class User(Model):

    # 定义类的属性到列的映射:

    id = IntegerField('id')

    name = StringField('username')

    email = StringField('email')

    password = StringField('password')

# 创建一个实例:

u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')

# 保存到数据库:

u.save()

输出如下:

Found model: User

Found mapping: email ==> <StringField:email>

Found mapping: password ==> <StringField:password>

Found mapping: id ==> <IntegerField:uid>

Found mapping: name ==> <StringField:username>

SQL: insert into User (password,email,username,uid) values (?,?,?,?)

ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]

SQLAlchemy简单使用

# 导入:

from sqlalchemy import Column, String, create_engine

from sqlalchemy.orm import sessionmaker

from sqlalchemy.ext.declarative import declarative_base

# 创建对象的基类:

Base = declarative_base()

# 定义User对象:

class User(Base):

    # 表的名字:

    __tablename__ = 'user'

    # 表的结构:

    id = Column(String(20), primary_key=True)

    name = Column(String(20))

# 初始化数据库连接:

engine = create_engine('mysql+mysqlconnector://root:password@localhost:3306/test') # '数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'

# 创建DBSession类型:

DBSession = sessionmaker(bind=engine)

# 创建新User对象:

new_user = User(id='5', name='Bob')

# 添加到session:

session.add(new_user)

# 提交即保存到数据库:

session.commit()

# 创建Query查询,filter是where条件,最后调用one()返回唯一行,如果调用all()则返回所有行:

user = session.query(User).filter(User.id=='5').one()

# 关闭session:

session.close()

WSGI简单使用和Web框架Flask的简单使用

from wsgiref.simple_server import make_server

def application(environ, start_response):

    start_response('200 OK', [('Content-Type', 'text/html')])

    return '<h1>Hello, web!</h1>'

# 创建一个服务器,IP地址为空,端口是8000,处理函数是application:

httpd = make_server('', 8000, application)

print "Serving HTTP on port 8000..."

# 开始监听HTTP请求:

httpd.serve_forever()

了解了WSGI框架,我们发现:其实一个Web App,就是写一个WSGI的处理函数,针对每个HTTP请求进行响应。
但是如何处理HTTP请求不是问题,问题是如何处理100个不同的URL。
一个最简单和最土的想法是从environ变量里取出HTTP请求的信息,然后逐个判断。

from flask import Flask

from flask import request

app = Flask(__name__)

@app.route('/', methods=['GET', 'POST'])

def home():

    return '<h1>Home</h1>'

@app.route('/signin', methods=['GET'])

def signin_form():

    return '''<form action="/signin" method="post">

              <p><input name="username"></p>

              <p><input name="password" type="password"></p>

              <p><button type="submit">Sign In</button></p>

              </form>'''

@app.route('/signin', methods=['POST'])

def signin():

    # 需要从request对象读取表单内容:

    if request.form['username']=='admin' and request.form['password']=='password':

        return '<h3>Hello, admin!</h3>'

    return '<h3>Bad username or password.</h3>'

if __name__ == '__main__':

    app.run()

格式化显示json

print(json.dumps(data, indent=4))

# 或者

import pprint

pprint.pprint(data)

实现类似Java或C中的枚举

#!/usr/bin/env python

# -*- coding: utf-8 -*-

import itertools

import sys

class ImmutableMixin(object):

    _inited = False

    def __init__(self):

        self._inited = True

    def __setattr__(self, key, value):

        if self._inited:

            raise Exception("unsupported action")

        super(ImmutableMixin, self).__setattr__(key, value)

class EnumMixin(object):

    def __iter__(self):

        for k, v in itertools.imap(lambda x: (x, getattr(self, x)), dir(self)):

            if not k.startswith('_'):

                yield v

class _RunnerType(ImmutableMixin, EnumMixin):

    SERIAL = "serial"

    CONSTANT = "constant"

    CONSTANT_FOR_DURATION = "constant_for_duration"

    RPS = "rps"

if __name__=="__main__":

    print _RunnerType.CONSTANT

创建文件时指定权限

import os

def write_to_file(path, contents, umask=None):

    """Write the given contents to a file

    :param path: Destination file

    :param contents: Desired contents of the file

    :param umask: Umask to set when creating this file (will be reset)

    """

    if umask:

        saved_umask = os.umask(umask)

    try:

        with open(path, 'w') as f:

            f.write(contents)

    finally:

        if umask:

            os.umask(saved_umask)

if __name__ == '__main__':

    write_to_file('/home/kong/tmp', 'test', 31)

    # Then you will see a file is created with permission 640.

    # Warning: If the file already exists, its permission will not be changed.

    # Note:For file, default all permission is 666, and 777 for directory.

多进程并发执行

import multiprocessing

import time

import os

def run(flag):

    print "flag: %s, sleep 2s in run" % flag

    time.sleep(2)

    print "%s exist" % flag

    return flag

if __name__ == '__main__':

    pool = multiprocessing.Pool(3)

    iter_result = pool.imap(run, xrange(6))

    print "sleep 5s\n\n"

    time.sleep(5)

    for i in range(6):

        try:

            result = iter_result.next(600)

        except multiprocessing.TimeoutError as e:

            raise

        print result

    pool.close()

    pool.join()

运行时自动填充函数参数

import decorator

def default_from_global(arg_name, env_name):

    def default_from_global(f, *args, **kwargs):

        id_arg_index = f.func_code.co_varnames.index(arg_name)

        args = list(args)

        if args[id_arg_index] is None:

            args[id_arg_index] = get_global(env_name)

            if not args[id_arg_index]:

                print("Missing argument: --%(arg_name)s" % {"arg_name": arg_name})

                return(1)

        return f(*args, **kwargs)

    return decorator.decorator(default_from_global)

# 如下是一个装饰器,可以用在需要自动填充参数的函数上。功能是:

# 如果没有传递函数的deploy_id参数,那么就从环境变量中获取(调用自定义的get_global函数)

with_default_deploy_id = default_from_global('deploy_id', ENV_DEPLOYMENT)   

嵌套装饰器

validator函数装饰func1,func1使用时接收参数(*arg, **kwargs),而func1又装饰func2(其实就是Rally中的scenario函数),给func2增加validators属性,是一个函数的列表,函数的接收参数config, clients, task。这些函数最终调用func1,传入参数(config, clients, task, *args, **kwargs),所以func1定义时参数是(config, clients, task, *arg, **kwargs) 
最终实现的效果是,func2有很多装饰器,每个都会接收自己的参数,做一些校验工作。

def validator(fn):

    """Decorator that constructs a scenario validator from given function.

    Decorated function should return ValidationResult on error.

    :param fn: function that performs validation

    :returns: rally scenario validator

    """

    def wrap_given(*args, **kwargs):

        """Dynamic validation decorator for scenario.

        :param args: the arguments of the decorator of the benchmark scenario

        ex. @my_decorator("arg1"), then args = ('arg1',)

        :param kwargs: the keyword arguments of the decorator of the scenario

        ex. @my_decorator(kwarg1="kwarg1"), then kwargs = {"kwarg1": "kwarg1"}

        """

        def wrap_validator(config, clients, task):

            return (fn(config, clients, task, *args, **kwargs) or

                    ValidationResult())

        def wrap_scenario(scenario):

            wrap_validator.permission = getattr(fn, "permission",

                                                consts.EndpointPermission.USER)

            if not hasattr(scenario, "validators"):

                scenario.validators = []

            scenario.validators.append(wrap_validator)

            return scenario

        return wrap_scenario

    return wrap_given

inspect库的一些常见用法

inspect.getargspec(func) 获取函数参数的名称和默认值,返回一个四元组(args, varargs, keywords, defaults),其中:
args是参数名称的列表;
varargs和keywords是*号和**号的变量名称;
defaults是参数默认值的列表;

inspect.getcallargs(func[, *args][, **kwds]) 绑定函数参数。返回绑定后函数的入参字典。

python中的私有属性和函数

Python把以两个或以上下划线字符开头且没有以两个或以上下划线结尾的变量当作私有变量。私有变量会在代码生成之前被转换为长格式(变为公有),这个过程叫"Private name mangling",如类A里的__private标识符将被转换为_A__private,但当类名全部以下划线命名的时候,Python就不再执行轧压。而且,虽然叫私有变量,仍然有可能被访问或修改(使用_classname__membername),所以, 总结如下:

无论是单下划线还是双下划线开头的成员,都是希望外部程序开发者不要直接使用这些成员变量和这些成员函数,只是双下划线从语法上能够更直接的避免错误的使用,但是如果按照_类名__成员名则依然可以访问到。单下划线的在动态调试时可能会方便一些,只要项目组的人都遵守下划线开头的成员不直接使用,那使用单下划线或许会更好。

Python 相关文章推荐
python实现连接mongodb的方法
May 08 Python
利用Python找出序列中出现最多的元素示例代码
Dec 08 Python
python3+PyQt5实现自定义流体混合窗口部件
Apr 24 Python
python版本五子棋的实现代码
Dec 11 Python
在Python中使用Neo4j的方法
Mar 14 Python
python3文件复制、延迟文件复制任务的实现方法
Sep 02 Python
Python 类,property属性(简化属性的操作),@property,property()用法示例
Oct 12 Python
python 实现return返回多个值
Nov 19 Python
TensorFlow tf.nn.conv2d实现卷积的方式
Jan 03 Python
python numpy 矩阵堆叠实例
Jan 17 Python
Python requests模块session代码实例
Apr 14 Python
aws 通过boto3 python脚本打pach的实现方法
May 10 Python
Perl中著名的Schwartzian转换问题解决实现
Jun 02 #Python
python通过ssh-powershell监控windows的方法
Jun 02 #Python
Python lxml模块安装教程
Jun 02 #Python
Python脚本文件打包成可执行文件的方法
Jun 02 #Python
python统计cpu利用率的方法
Jun 02 #Python
Python2.x中文乱码问题解决方法
Jun 02 #Python
python实现的守护进程(Daemon)用法实例
Jun 02 #Python
You might like
php中用文本文件做数据库的实现方法
2008/03/27 PHP
PHP中数组定义的几种方法
2013/09/01 PHP
PHP图像处理类库MagickWand用法实例分析
2015/05/21 PHP
PHP代码维护,重构变困难的4种原因分析
2016/01/25 PHP
PHP简单实现生成txt文件到指定目录的方法
2016/04/25 PHP
PHP使用星号替代用户名手机和邮箱的实现代码
2018/02/07 PHP
BOOM vs RR BO5 第二场 2.14
2021/03/10 DOTA
永不消失的title提示代码
2007/02/15 Javascript
javascript 控制 html元素 显示/隐藏实现代码
2009/09/01 Javascript
ExtJS 学习专题(一) 如何应用ExtJS(附实例)
2010/03/11 Javascript
js的touch事件的实际引用
2014/10/13 Javascript
JQuery选中checkbox方法代码实例(全选、反选、全不选)
2015/04/27 Javascript
在JavaScript中处理数组之reverse()方法的使用
2015/06/09 Javascript
JS代码防止SQL注入的方法(超简单)
2016/04/12 Javascript
响应式表格之固定表头的简单实现
2016/08/26 Javascript
nodejs个人博客开发第一步 准备工作
2017/04/12 NodeJs
vue微信分享出来的链接点开是首页问题的解决方法
2018/11/28 Javascript
Vue利用Blob下载原生二进制数组文件
2019/09/25 Javascript
微信小程序学习总结(三)条件、模板、文件引用实例分析
2020/06/04 Javascript
解决python3 HTMLTestRunner测试报告中文乱码的问题
2018/12/17 Python
Python3中函数参数传递方式实例详解
2019/05/05 Python
Django Rest framework认证组件详细用法
2019/07/25 Python
pyenv虚拟环境管理python多版本和软件库的方法
2019/12/26 Python
关于box-sizing的全面理解
2016/07/28 HTML / CSS
巴西Mr. Cat在线商店:购买包包和鞋子
2019/09/08 全球购物
IGK Hair官网:喷雾、洗发水、护发素等
2020/11/03 全球购物
医科大学生毕业的自我评价分享
2013/11/12 职场文书
音乐学个人的自荐书范文
2013/11/26 职场文书
交通事故检查书范文
2014/01/30 职场文书
工程承包协议书
2014/04/22 职场文书
马丁路德金演讲稿
2014/05/19 职场文书
重阳节标语大全
2014/10/07 职场文书
个人销售励志奋斗口号
2019/12/05 职场文书
PL350与SW11的比较
2021/04/22 无线电
Redis持久化与主从复制的实践
2021/04/27 Redis
Pandas自定义选项option设置
2021/07/25 Python