Python 解析库json及jsonpath pickle的实现


Posted in Python onAugust 17, 2020

1. 数据抽取的概念

Python 解析库json及jsonpath pickle的实现

2. 数据的分类

Python 解析库json及jsonpath pickle的实现

3. JSON数据概述及解析

3.1 JSON数据格式

Python 解析库json及jsonpath pickle的实现

3.2 解析库json

json模块是Python内置标准库,主要可以完成两个功能:序列化和反序列化。JSON对象和Python对象映射图如下:

Python 解析库json及jsonpath pickle的实现

3.2.1 json序列化

对象(字典/列表) 通过 json.dump()/json.dumps() ==> json字符串。示例代码如下:

import json
class Phone(object):
 def __init__(self, name, price):
  self.name = name
  self.price = price

class Default(json.JSONEncoder):
 def default(self, o):
  print(o) # o: <__main__.Phone object at 0x10aa52c90>
  return [o.name, o.price]

def parse(obj):
 print(obj)
 return {"name": obj.name, "price": obj.price}

person_info_dict = {
 "name": "Amo",
 "age": 18,
 "is_boy": True,
 # "n": float("nan"), # float("nan"):NaN float("inf")=>Infinity float("-inf")=>-Infinity
 "phone": Phone("苹果8plus", 6458),
 "hobby": ("sing", "dance"),
 "dog": {
  "name": "藏獒",
  "age": 5,
  "color": "棕色",
  "isVIP": True,
  "child": None
 },
}

"""
obj:需要序列化的对象 字典/列表 这里指的是person_info_dict
indent: 缩进 单位: 字符
sort_keys: 是否按key排序 默认是False不排序
cls: json.JSONEncoder子类 处理不能序列化的对象
ensure_ascii: 是否确保ascii编码 默认是True确保 "苹果8plus"==>"\u82f9\u679c8plus" 所以改为False
default: 对象不能被序列化时,调用对应的函数解析
"""

# 将结果返回给一个变量
result = json.dumps(person_info_dict,
     indent=2,
     sort_keys=True,
     ensure_ascii=False,
     # cls=Default,
     default=parse,
     # allow_nan=False 是否处理特殊常量值
     # 默认为True 但是JSON标准规范不支持NaN, Infinity和-Infinity
     )
print(result)
with open("dump.json", "w", encoding="utf8") as file:
 # json.dump是将序列化后的内容存储到文件中 其他参数用法和dumps一致
 json.dump(person_info_dict, file, indent=4, ensure_ascii=False, default=parse)

3.2.2 json反序列化

json字符串通过json.load()/json.loads()==> 对象(字典/列表),示例代码如下:

import json
class Phone(object):
 def __init__(self, name, price):
  self.name = name
  self.price = price

def pi(num):
 return int(num) + 1

def oh(dic):
 if "price" in dic.keys():
  return Phone(dic["name"], dic["price"])
 return dic

def oph(*args, **kwargs):
 print(*args, **kwargs)

# 我自己本地有一个dump.json文件
with open("dump.json", "r", encoding="utf8") as file:
 # content = file.read()
 # parse_int/float: 整数/浮点数钩子函数
 # object_hook: 对象解析钩子函数 将字典转为特定对象 传递给函数的是字典对象
 # object_pairs_hook: 转化为特定对象 传递的是元组列表
 # parse_constant: 常量钩子函数 NaN/Infinity/-Infinity
 # result = json.loads(content, object_hook=oh, parse_int=pi, object_pairs_hook=oph)
 result = json.load(file, parse_int=pi, object_hook=oh) # 直接将文件对象传入
 print(type(result)) # <class 'dict'>
 print(result)

4. jsonpath

jsonpath三方库,点击这里这里进入官网,通过路径表达式,来快速获取字典当中的指定数据,灵感来自xpath表达式。命令安装:

pip install --user -i http://pypi.douban.com/simple --trusted-host pypi.douban.com jsonpath

或者:

Python 解析库json及jsonpath pickle的实现

4.1 使用

语法格式如下:

from jsonpath import jsonpath
dic = {....} # 要找数据的字典
jsonpath(dic, 表达式)

常用的表达式语法如下:

JSONPath 描述
$ 根节点(假定的外部对象,可以理解为上方的dic)
@ 现行节点(当前对象)
.或者[] 取子节点(子对象)
.. 就是不管位置,选择所有符合条件的节点(后代对象)
* 匹配所有元素节点
[] 迭代集合,谓词条件,下标
[,] 多选
?() 支持过滤操作
() 支持表达式操作
[start: end : step] 切片

4.2 使用示例

案例一用到的字典如下:

dic = {
 "person": {
  "name": "Amo",
  "age": 18,
  "dog": [{
   "name": "小花",
   "color": "red",
   "age": 6,
   "isVIP": True
  },
   {
    "name": "小黑",
    "color": "black",
    "age": 2
   }]
 }
}

将上述抽象成一个树形结构如图所示:

Python 解析库json及jsonpath pickle的实现

需求及结果如下:

JSONPath Result
$.person.age 获取人的年龄
$..dog[1].age 获取第2个小狗的年龄
$..dog[0,1].age | $..dog[*].age 获取所有小狗的年龄
$..dog[?(@.isVIP)] 获取是VIP的小狗
$..dog[?(@.age>2)] 获取年龄大于2的小狗
$..dog[-1:] | $..dog[(@.length-1)] 获取最后一个小狗

代码如下:

from jsonpath import jsonpath

dic = {
 "person": {
  "name": "Amo",
  "age": 18,
  "dog": [{
   "name": "小花",
   "color": "red",
   "age": 6,
   "isVIP": True
  },
   {
    "name": "小黑",
    "color": "black",
    "age": 2
   }]
 }
}

# 1.获取人的年龄
print(jsonpath(dic, "$.person.age")) # 获取到数据返回一个列表 否则返回False
# 2.获取第2个小狗的年龄
print(jsonpath(dic, "$..dog[1].age"))
# 3.获取所有小狗的年龄
print(jsonpath(dic, "$..dog[0,1].age"))
print(jsonpath(dic, "$..dog[*].age"))
# 4.获取是VIP的小狗
print(jsonpath(dic, "$..dog[?(@.isVIP)]"))
# 5.获取年龄大于2的小狗
print(jsonpath(dic, "$..dog[?(@.age>2)]"))
# 6.获取最后一个小狗
print(jsonpath(dic, "$..dog[-1:]"))
print(jsonpath(dic, "$..dog[(@.length-1)]"))

上述代码执行结果如下:

Python 解析库json及jsonpath pickle的实现

案例二用到的字典如下:

book_dict = {
 "store": {
  "book": [
   {"category": "reference",
    "author": "Nigel Rees",
    "title": "Sayings of the Century",
    "price": 8.95
    },
   {"category": "fiction",
    "author": "Evelyn Waugh",
    "title": "Sword of Honour",
    "price": 12.99
    },
   {"category": "fiction",
    "author": "Herman Melville",
    "title": "Moby Dick",
    "isbn": "0-553-21311-3",
    "price": 8.99
    },
   {"category": "fiction",
    "author": "J. R. R. Tolkien",
    "title": "The Lord of the Rings",
    "isbn": "0-395-19395-8",
    "price": 22.99
    }
  ],
  "bicycle": {
   "color": "red",
   "price": 19.95
  }
 }
}

将上述抽象成一个树形结构如图所示:

Python 解析库json及jsonpath pickle的实现

需求及结果如下:

JSONPath Result
$.store.book[*].author store中的所有的book的作者
$.store[*] store下的所有的元素
$..price store中的所有的内容的价格
$..book[2] 第三本书
$..book[(@.length-1)] 最后一本书
$..book[0:2] 前两本书
$.store.book[?(@.isbn)] 获取有isbn的所有书
$.store.book[?(@.price>10)] 获取价格大于10的所有的书
$..* 获取所有的数据

代码如下:

from jsonpath import jsonpath

book_dict = {
 "store": {
  "book": [
   {"category": "reference",
    "author": "Nigel Rees",
    "title": "Sayings of the Century",
    "price": 8.95
    },
   {"category": "fiction",
    "author": "Evelyn Waugh",
    "title": "Sword of Honour",
    "price": 12.99
    },
   {"category": "fiction",
    "author": "Herman Melville",
    "title": "Moby Dick",
    "isbn": "0-553-21311-3",
    "price": 8.99
    },
   {"category": "fiction",
    "author": "J. R. R. Tolkien",
    "title": "The Lord of the Rings",
    "isbn": "0-395-19395-8",
    "price": 22.99
    }
  ],
  "bicycle": {
   "color": "red",
   "price": 19.95
  }
 }
}
# 1.store中的所有的book的作者
print(jsonpath(book_dict, "$.store.book[*].author"))
print(jsonpath(book_dict, "$..author"))
# 2.store下的所有的元素
print(jsonpath(book_dict, "$.store[*]"))
print(jsonpath(book_dict, "$.store.*"))
# 3.store中的所有的内容的价格
print(jsonpath(book_dict, "$..price"))
# 4.第三本书
print(jsonpath(book_dict, "$..book[2]"))
# 5.最后一本书
print(jsonpath(book_dict, "$..book[-1:]"))
print(jsonpath(book_dict, "$..book[(@.length-1)]"))
# 6.前两本书
print(jsonpath(book_dict, "$..book[0:2]"))
# 7.获取有isbn的所有书
print(jsonpath(book_dict, "$.store.book[?(@.isbn)]"))
# 8.获取价格大于10的所有的书
print(jsonpath(book_dict, "$.store.book[?(@.price>10)]"))
# 9.获取所有的数据
print(jsonpath(book_dict, "$..*"))

5. Python专用JSON解析库pickle

pickle处理的json对象不通用,可以额外的把函数给序列化。示例代码如下:

import pickle

def eat():
 print("Amo在努力地写博客~")

person_info_dict = {
 "name": "Amo",
 "age": 18,
 "eat": eat
}

# print(pickle.dumps(person_info_dict))
with open("pickle_json", "wb") as file:
 pickle.dump(person_info_dict, file)

with open("pickle_json", "rb") as file:
 result = pickle.load(file)
 result["eat"]()

JsonPath与XPath语法对比:

Json结构清晰,可读性高,复杂度低,非常容易匹配,下表中对应了XPath的用法。

XPath JSONPath 描述
/ $ 根节点
. @ 现行节点
/ .or[] 取子节点
.. n/a 取父节点,Jsonpath未支持
// .. 就是不管位置,选择所有符合条件的条件
* * 匹配所有元素节点
@ n/a 根据属性访问,Json不支持,因为Json是个Key-value递归结构,不需要。
[] [] 迭代器标示(可以在里边做简单的迭代操作,如数组下标,根据内容选值等)
| [,] 支持迭代器中做多选。
[] ?() 支持过滤操作.
n/a () 支持表达式计算
() n/a 分组,JsonPath不支持

到此这篇关于Python 解析库json及jsonpath pickle的实现的文章就介绍到这了,更多相关Python 解析库json及jsonpath pickle内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python 正则式使用心得
May 07 Python
Python松散正则表达式用法分析
Apr 29 Python
python中利用Future对象回调别的函数示例代码
Sep 07 Python
[原创]windows下Anaconda的安装与配置正解(Anaconda入门教程)
Apr 05 Python
python实战教程之自动扫雷
Jul 13 Python
python进阶之多线程对同一个全局变量的处理方法
Nov 09 Python
pytorch 使用单个GPU与多个GPU进行训练与测试的方法
Aug 19 Python
如何基于python实现画不同品种的樱花树
Jan 03 Python
解决python 在for循环并且pop数组的时候会跳过某些元素的问题
Dec 11 Python
Python制作运行进度条的实现效果(代码运行不无聊)
Feb 24 Python
使用Django框架创建项目
Jun 10 Python
在python中读取和写入CSV文件详情
Jun 28 Python
Python实现爬取网页中动态加载的数据
Aug 17 #Python
Python 如何操作 SQLite 数据库
Aug 17 #Python
Python使用正则表达式实现爬虫数据抽取
Aug 17 #Python
Python 通过正则表达式快速获取电影的下载地址
Aug 17 #Python
Python 程序员必须掌握的日志记录
Aug 17 #Python
Python使用urlretrieve实现直接远程下载图片的示例代码
Aug 17 #Python
Python 如何查找特定类型文件
Aug 17 #Python
You might like
php读取txt文件组成SQL并插入数据库的代码(原创自Zjmainstay)
2012/07/31 PHP
PHP字符串中特殊符号的过滤方法介绍
2014/02/18 PHP
xss防御之php利用httponly防xss攻击
2014/03/21 PHP
php常用字符串处理函数实例分析
2014/11/22 PHP
浅谈ThinkPHP5.0版本和ThinkPHP3.2版本的区别
2017/06/17 PHP
javascript实现的鼠标链接提示效果生成器代码
2007/06/28 Javascript
javascript预览上传图片发现的问题的解决方法
2010/11/25 Javascript
关于递归运算的顺序测试代码
2011/11/30 Javascript
javascript面向对象之共享成员属性与方法及prototype关键字用法
2015/01/13 Javascript
jQuery实现点击小图显示大图代码分享
2015/08/25 Javascript
JavaScript暂停和继续定时器的实现方法
2016/07/18 Javascript
JS中的BOM应用
2018/02/02 Javascript
javascript事件监听与事件委托实例详解
2019/08/16 Javascript
全面解析js中的原型,原型对象,原型链
2021/01/25 Javascript
python函数缺省值与引用学习笔记分享
2013/02/10 Python
python实现实时监控文件的方法
2016/08/26 Python
Python编程实现数学运算求一元二次方程的实根算法示例
2017/04/02 Python
Django中Model的使用方法教程
2018/03/07 Python
OPENCV去除小连通区域,去除孔洞的实例讲解
2018/06/21 Python
Sanic框架配置操作分析
2018/07/17 Python
python使用tcp实现局域网内文件传输
2020/03/20 Python
Opencv+Python实现图像运动模糊和高斯模糊的示例
2019/04/11 Python
详解Python文件修改的两种方式
2019/08/22 Python
pytorch GAN伪造手写体mnist数据集方式
2020/01/10 Python
Win10下用Anaconda安装TensorFlow(图文教程)
2020/06/18 Python
HTML5 Canvas绘制圆点虚线实例
2015/01/01 HTML / CSS
可靠的数据流传输TCP
2016/03/15 面试题
linux下进程间通信的方式
2014/12/23 面试题
EJB包括(SessionBean,EntityBean)说出他们的生命周期,及如何管理事务的?
2013/02/17 面试题
小学生期末自我鉴定
2014/01/19 职场文书
保险公司年会主持词
2014/03/22 职场文书
授权委托书公证
2014/09/14 职场文书
居委会四风问题个人对照检查材料
2014/09/25 职场文书
2015年人事工作总结范文
2015/04/09 职场文书
python读取pdf格式文档的实现代码
2021/04/01 Python
pytorch 使用半精度模型部署的操作
2021/05/24 Python