python3实现单目标粒子群算法


Posted in Python onNovember 14, 2019

本文实例为大家分享了python3单目标粒子群算法的具体代码,供大家参考,具体内容如下

关于PSO的基本知识......就说一下算法流程

1) 初始化粒子群;

    随机设置各粒子的位置和速度,默认粒子的初始位置为粒子最优位置,并根据所有粒子最优位置,选取群体最优位置。

2) 判断是否达到迭代次数;

    若没有达到,则跳转到步骤3)。否则,直接输出结果。

3) 更新所有粒子的位置和速度;

4) 计算各粒子的适应度值。

     将粒子当前位置的适应度值与粒子最优位置的适应度值进行比较,决定是否更新粒子最优位置;将所有粒子最优位置的适应度值与群体最优位置的适应度值进行比较,决定是否更新群体最优位置。然后,跳转到步骤2)。

直接扔代码......(PS:1.参数动态调节;2.例子是二维的)

首先,是一些准备工作...

# Import libs
import numpy as np
import random as rd
import matplotlib.pyplot as plt
 
# Constant definition
MIN_POS = [-5, -5]         # Minimum position of the particle
MAX_POS = [5, 5]          # Maximum position of the particle
MIN_SPD = [-0.5, -0.5]        # Minimum speed of the particle
MAX_SPD = [1, 1]          # Maximum speed of the particle
C1_MIN = 0
C1_MAX = 1.5
C2_MIN = 0
C2_MAX = 1.5
W_MAX = 1.4
W_MIN = 0

然后是PSO类

# Class definition
class PSO():
 """
  PSO class
 """
 
 def __init__(self,iters=100,pcount=50,pdim=2,mode='min'):
  """
   PSO initialization
   ------------------
  """
 
  self.w = None         # Inertia factor
  self.c1 = None        # Learning factor
  self.c2 = None        # Learning factor
 
  self.iters = iters       # Number of iterations
  self.pcount = pcount       # Number of particles
  self.pdim = pdim        # Particle dimension
  self.gbpos = np.array([0.0]*pdim)    # Group optimal position
  
  self.mode = mode        # The mode of PSO
 
  self.cur_pos = np.zeros((pcount, pdim))  # Current position of the particle
  self.cur_spd = np.zeros((pcount, pdim))  # Current speed of the particle
  self.bpos = np.zeros((pcount, pdim))   # The optimal position of the particle
 
  self.trace = []        # Record the function value of the optimal solution
  
 
 def init_particles(self):
  """
   init_particles function
   -----------------------
  """
 
  # Generating particle swarm
  for i in range(self.pcount):
   for j in range(self.pdim):
    self.cur_pos[i,j] = rd.uniform(MIN_POS[j], MAX_POS[j])
    self.cur_spd[i,j] = rd.uniform(MIN_SPD[j], MAX_SPD[j])
    self.bpos[i,j] = self.cur_pos[i,j]
 
  # Initial group optimal position
  for i in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.cur_pos[i]) < self.fitness(self.gbpos):
     gbpos = self.cur_pos[i]
   elif self.mode == 'max':
    if self.fitness(self.cur_pos[i]) > self.fitness(self.gbpos):
     gbpos = self.cur_pos[i]
 
 def fitness(self, x):
  """
   fitness function
   ----------------
   Parameter:
    x : 
  """
  
  # Objective function
  fitval = 5*np.cos(x[0]*x[1])+x[0]*x[1]+x[1]**3 # min
  # Retyrn value
  return fitval
 
 def adaptive(self, t, p, c1, c2, w):
  """
  """
 
  #w = 0.95 #0.9-1.2
  if t == 0:
   c1 = 0
   c2 = 0
   w = 0.95
  else:
   if self.mode == 'min':
    # c1
    if self.fitness(self.cur_pos[p]) > self.fitness(self.bpos[p]):
     c1 = C1_MIN + (t/self.iters)*C1_MAX + np.random.uniform(0,0.1)
    elif self.fitness(self.cur_pos[p]) <= self.fitness(self.bpos[p]):
     c1 = c1
    # c2 
    if self.fitness(self.bpos[p]) > self.fitness(self.gbpos):
     c2 = C2_MIN + (t/self.iters)*C2_MAX + np.random.uniform(0,0.1)
    elif self.fitness(self.bpos[p]) <= self.fitness(self.gbpos):
     c2 = c2
    # w
    #c1 = C1_MAX - (C1_MAX-C1_MIN)*(t/self.iters)
    #c2 = C2_MIN + (C2_MAX-C2_MIN)*(t/self.iters)
    w = W_MAX - (W_MAX-W_MIN)*(t/self.iters)
   elif self.mode == 'max':
    pass
 
  return c1, c2, w
 
 def update(self, t):
  """
   update function
   ---------------
    Note that :
     1. Update particle position
     2. Update particle speed
     3. Update particle optimal position
     4. Update group optimal position
  """
 
  # Part1 : Traverse the particle swarm
  for i in range(self.pcount):
   
   # Dynamic parameters
   self.c1, self.c2, self.w = self.adaptive(t,i,self.c1,self.c2,self.w)
   
   # Calculate the speed after particle iteration
   # Update particle speed
   self.cur_spd[i] = self.w*self.cur_spd[i] \
        +self.c1*rd.uniform(0,1)*(self.bpos[i]-self.cur_pos[i])\
        +self.c2*rd.uniform(0,1)*(self.gbpos - self.cur_pos[i])
   for n in range(self.pdim):
    if self.cur_spd[i,n] > MAX_SPD[n]:
     self.cur_spd[i,n] = MAX_SPD[n]
    elif self.cur_spd[i,n] < MIN_SPD[n]:
     self.cur_spd[i,n] = MIN_SPD[n]
 
   # Calculate the position after particle iteration
   # Update particle position 
   self.cur_pos[i] = self.cur_pos[i] + self.cur_spd[i]
   for n in range(self.pdim):
    if self.cur_pos[i,n] > MAX_POS[n]:
     self.cur_pos[i,n] = MAX_POS[n]
    elif self.cur_pos[i,n] < MIN_POS[n]:
     self.cur_pos[i,n] = MIN_POS[n]
    
  # Part2 : Update particle optimal position
  for k in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.cur_pos[k]) < self.fitness(self.bpos[k]):
     self.bpos[k] = self.cur_pos[k]
   elif self.mode == 'max':
    if self.fitness(self.cur_pos[k]) > self.fitness(self.bpos[k]):
     self.bpos[k] = self.cur_pos[k]
 
  # Part3 : Update group optimal position
  for k in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.bpos[k]) < self.fitness(self.gbpos):
     self.gbpos = self.bpos[k]
   elif self.mode == 'max':
    if self.fitness(self.bpos[k]) > self.fitness(self.gbpos):
     self.gbpos = self.bpos[k]
 
 def run(self):
  """
   run function
   -------------
  """
 
  # Initialize the particle swarm
  self.init_particles()
 
  # Iteration
  for t in range(self.iters):
   # Update all particle information
   self.update(t)
   #
   self.trace.append(self.fitness(self.gbpos))

然后是main...

def main():
 """
  main function
 """
 
 for i in range(1):
  
  pso = PSO(iters=100,pcount=50,pdim=2, mode='min')
  pso.run()
   
  #
  print('='*40)
  print('= Optimal solution:')
  print('= x=', pso.gbpos[0])
  print('= y=', pso.gbpos[1])
  print('= Function value:')
  print('= f(x,y)=', pso.fitness(pso.gbpos))
  #print(pso.w)
  print('='*40)
  
  #
  plt.plot(pso.trace, 'r')
  title = 'MIN: ' + str(pso.fitness(pso.gbpos))
  plt.title(title)
  plt.xlabel("Number of iterations")
  plt.ylabel("Function values")
  plt.show()
 #
 input('= Press any key to exit...')
 print('='*40)
 exit() 
 
 
if __name__ == "__main__":
 
 main()

最后是计算结果,完美结束!!!

python3实现单目标粒子群算法

python3实现单目标粒子群算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现Linux下守护进程的编写方法
Aug 22 Python
Python Socket编程详细介绍
Mar 23 Python
python进阶_浅谈面向对象进阶
Aug 17 Python
Python socket实现多对多全双工通信的方法
Feb 13 Python
Python图像处理模块ndimage用法实例分析
Sep 05 Python
Python3安装pip工具的详细步骤
Oct 14 Python
python 发送json数据操作实例分析
Oct 15 Python
如何在windows下安装Pycham2020软件(方法步骤详解)
May 03 Python
一篇文章搞懂python的转义字符及用法
Sep 03 Python
Python基于locals返回作用域字典
Oct 17 Python
python statsmodel的使用
Dec 21 Python
Python对excel的基本操作方法
Feb 18 Python
python socket 聊天室实例代码详解
Nov 14 #Python
python中dict()的高级用法实现
Nov 13 #Python
python实现的多任务版udp聊天器功能案例
Nov 13 #Python
利用python实现PSO算法优化二元函数
Nov 13 #Python
使用python制作一个解压缩软件
Nov 13 #Python
Python 脚本实现淘宝准点秒杀功能
Nov 13 #Python
基于python实现把图片转换成素描
Nov 13 #Python
You might like
php实现的简单压缩英文字符串的代码
2008/04/24 PHP
php 数组的指针操作实现代码
2011/02/08 PHP
php计算2个日期的差值函数分享
2015/02/02 PHP
PHP开发注意事项总结
2015/02/04 PHP
php7 安装yar 生成docker镜像
2017/05/09 PHP
你必须知道的JavaScript 变量命名规则详解
2013/05/07 Javascript
用js正确判断用户名cookie是否存在的方法
2014/01/28 Javascript
javascript实现数字+字母验证码的简单实例
2014/02/10 Javascript
脚本合并提升javascript性能示例
2014/02/24 Javascript
使用jquery写个更改表格行顺序的小功能
2014/04/29 Javascript
jQuery响应鼠标事件并隐藏与显示input默认值
2014/08/24 Javascript
node中socket.io的事件使用详解
2014/12/15 Javascript
使用javaScript动态加载Js文件和Css文件
2015/10/24 Javascript
jQuery插件autocomplete使用详解
2017/02/04 Javascript
vue 中引用gojs绘制E-R图的方法示例
2018/08/24 Javascript
javascript全局自定义鼠标右键菜单
2020/12/08 Javascript
微信小程序实现登录注册功能
2020/12/29 Javascript
pip 错误unused-command-line-argument-hard-error-in-future解决办法
2014/06/01 Python
Python中shutil模块的学习笔记教程
2017/04/04 Python
Python实现的拟合二元一次函数功能示例【基于scipy模块】
2018/05/15 Python
Python3使用pandas模块读写excel操作示例
2018/07/03 Python
Python django使用多进程连接mysql错误的解决方法
2018/10/08 Python
pandas中DataFrame修改index、columns名的方法示例
2019/08/02 Python
python字符串替换re.sub()方法解析
2019/09/18 Python
Python实现加密接口测试方法步骤详解
2020/06/05 Python
python Gabor滤波器讲解
2020/10/26 Python
Python如何实现Paramiko的二次封装
2021/01/30 Python
奥地利汽车配件店:Pkwteile.at
2017/03/10 全球购物
美国时尚配饰品牌:Dooney & Bourke
2017/11/14 全球购物
关于Assembly命名空间的三个面试题
2015/07/23 面试题
微笑服务标语
2014/06/24 职场文书
餐饮店长岗位职责
2015/04/14 职场文书
行政上诉状范文
2015/05/23 职场文书
蔬果开业典礼发言稿应该怎么写?
2019/09/03 职场文书
python爬虫框架feapde的使用简介
2021/04/20 Python
用python自动生成日历
2021/04/24 Python