Python实现平行坐标图的两种方法小结


Posted in Python onJuly 04, 2019

平行坐标图,一种数据可视化的方式。以多个垂直平行的坐标轴表示多个维度,以维度上的刻度表示在该属性上对应值,相连而得的一个折线表示一个样本,以不同颜色区分类别。

但是很可惜,才疏学浅,没办法在Python里实现不同颜色来区分不同的类别。如果对此比较在意的大神可以不要往下看了。。。。。。。。。

Python实现平行坐标图的两种方法小结

上图是一个基于iris数据集所画的一个平行坐标图。

隔开隔开.......................................隔开隔开

不多扯了,下面正式上代码

方法一、基于pyecharts第三方包来实现

from pyecharts import Parallel
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

data = pd.read_csv('iris.csv')
data_1 = np.array(data[['Sepal_length', 'Sepal_width', 'Petal_length', 'Petal_width']]).tolist()

schema = ['Sepal_length', 'Sepal_width', 'Petal_length', 'Petal_width']

parallel = Parallel('iris平行坐标图')
parallel.config(schema)
parallel.add('dasfd',data_1,is_random = True)
parallel

可惜,这样子run出来的恰好结果就是上图,没办法实现不同类别用不同颜色来区分。实在不得不说是一个令人超级不爽的一个地方,劳资都想咋了电脑当时,哈哈哈哈。。。

在这里多扯两句啊,pyecharts这个包还真的是特么的好用啊,各种图都能实现,感兴趣的朋友不妨装个来耍耍

方法二、基于pandas来实现

what?pandas?这把绝世好剑不是用来处理一些数据的吗?什么时候还具有画图的功能了,lz你没猫饼吧?

说实话,lz当时也没想到pandas能用来画图,而且是画平行坐标图。下面就是代码了:

import matplotlib.pyplot as plt
import pandas as pd
from pandas.tools.plotting import parallel_coordinates

data = pd.read_csv('iris.csv')
data_1 =data[['Species','Sepal_length', 'Sepal_width', 'Petal_length', 'Petal_width']]

parallel_coordinates(data_1,'Species')
plt.legend(loc='upper center', bbox_to_anchor=(0.5,-0.1),ncol=3,fancybox=True,shadow=True)
plt.show()

run一下,就可以得到下图了

Python实现平行坐标图的两种方法小结

不难看出,这张图是具有了不同颜色,但是每个坐标轴的刻度都是0-8啊,lz希望的是每个轴独立的啊·········

以上就是我探讨在Python里如何实现平行坐标图所得到的一些结果吧。两种方式都没办法很完美的实现我们的需求(轴独立、颜色区别)。正所谓活到老,学到老。各位大神如果有可以实现的方式,可以教教小弟,小弟不胜感激!

虽然lz没办法在Python里画出满意的平行坐标图,但是最后也用Echarts实现了一下(哈哈,有时候没办法了,不妨试试换个工具)

Python实现平行坐标图的两种方法小结

顺道附上代码吧,不然担心被人画小圈圈

// Schema:
// date,AQIindex,PM2.5,PM10,CO,NO2,SO2
var data1 = [[5.1, 3.5, 1.4, 0.2], [4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2], [4.6, 3.1, 1.5, 0.2], [5.0, 3.6, 1.4, 0.2], [5.4, 3.9, 1.7, 0.4], [4.6, 3.4, 1.4, 0.3], [5.0, 3.4, 1.5, 0.2], [4.4, 2.9, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5.4, 3.7, 1.5, 0.2], [4.8, 3.4, 1.6, 0.2], [4.8, 3.0, 1.4, 0.1], [4.3, 3.0, 1.1, 0.1], [5.8, 4.0, 1.2, 0.2], [5.7, 4.4, 1.5, 0.4], [5.4, 3.9, 1.3, 0.4], [5.1, 3.5, 1.4, 0.3], [5.7, 3.8, 1.7, 0.3], [5.1, 3.8, 1.5, 0.3], [5.4, 3.4, 1.7, 0.2], [5.1, 3.7, 1.5, 0.4], [4.6, 3.6, 1.0, 0.2], [5.1, 3.3, 1.7, 0.5], [4.8, 3.4, 1.9, 0.2], [5.0, 3.0, 1.6, 0.2], [5.0, 3.4, 1.6, 0.4], [5.2, 3.5, 1.5, 0.2], [5.2, 3.4, 1.4, 0.2], [4.7, 3.2, 1.6, 0.2], [4.8, 3.1, 1.6, 0.2], [5.4, 3.4, 1.5, 0.4], [5.2, 4.1, 1.5, 0.1], [5.5, 4.2, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5.0, 3.2, 1.2, 0.2], [5.5, 3.5, 1.3, 0.2], [4.9, 3.1, 1.5, 0.1], [4.4, 3.0, 1.3, 0.2], [5.1, 3.4, 1.5, 0.2], [5.0, 3.5, 1.3, 0.3], [4.5, 2.3, 1.3, 0.3], [4.4, 3.2, 1.3, 0.2], [5.0, 3.5, 1.6, 0.6], [5.1, 3.8, 1.9, 0.4], [4.8, 3.0, 1.4, 0.3], [5.1, 3.8, 1.6, 0.2], [4.6, 3.2, 1.4, 0.2], [5.3, 3.7, 1.5, 0.2], [5.0, 3.3, 1.4, 0.2]
];
var data2 = [[7.0, 3.2, 4.7, 1.4], [6.4, 3.2, 4.5, 1.5], [6.9, 3.1, 4.9, 1.5], [5.5, 2.3, 4.0, 1.3], [6.5, 2.8, 4.6, 1.5], [5.7, 2.8, 4.5, 1.3], [6.3, 3.3, 4.7, 1.6], [4.9, 2.4, 3.3, 1.0], [6.6, 2.9, 4.6, 1.3], [5.2, 2.7, 3.9, 1.4], [5.0, 2.0, 3.5, 1.0], [5.9, 3.0, 4.2, 1.5], [6.0, 2.2, 4.0, 1.0], [6.1, 2.9, 4.7, 1.4], [5.6, 2.9, 3.6, 1.3], [6.7, 3.1, 4.4, 1.4], [5.6, 3.0, 4.5, 1.5], [5.8, 2.7, 4.1, 1.0], [6.2, 2.2, 4.5, 1.5], [5.6, 2.5, 3.9, 1.1], [5.9, 3.2, 4.8, 1.8], [6.1, 2.8, 4.0, 1.3], [6.3, 2.5, 4.9, 1.5], [6.1, 2.8, 4.7, 1.2], [6.4, 2.9, 4.3, 1.3], [6.6, 3.0, 4.4, 1.4], [6.8, 2.8, 4.8, 1.4], [6.7, 3.0, 5.0, 1.7], [6.0, 2.9, 4.5, 1.5], [5.7, 2.6, 3.5, 1.0], [5.5, 2.4, 3.8, 1.1], [5.5, 2.4, 3.7, 1.0], [5.8, 2.7, 3.9, 1.2], [6.0, 2.7, 5.1, 1.6], [5.4, 3.0, 4.5, 1.5], [6.0, 3.4, 4.5, 1.6], [6.7, 3.1, 4.7, 1.5], [6.3, 2.3, 4.4, 1.3], [5.6, 3.0, 4.1, 1.3], [5.5, 2.5, 4.0, 1.3], [5.5, 2.6, 4.4, 1.2], [6.1, 3.0, 4.6, 1.4], [5.8, 2.6, 4.0, 1.2], [5.0, 2.3, 3.3, 1.0], [5.6, 2.7, 4.2, 1.3], [5.7, 3.0, 4.2, 1.2], [5.7, 2.9, 4.2, 1.3], [6.2, 2.9, 4.3, 1.3], [5.1, 2.5, 3.0, 1.1], [5.7, 2.8, 4.1, 1.3]
];
var data3 = [[6.3, 3.3, 6.0, 2.5], [5.8, 2.7, 5.1, 1.9], [7.1, 3.0, 5.9, 2.1], [6.3, 2.9, 5.6, 1.8], [6.5, 3.0, 5.8, 2.2], [7.6, 3.0, 6.6, 2.1], [4.9, 2.5, 4.5, 1.7], [7.3, 2.9, 6.3, 1.8], [6.7, 2.5, 5.8, 1.8], [7.2, 3.6, 6.1, 2.5], [6.5, 3.2, 5.1, 2.0], [6.4, 2.7, 5.3, 1.9], [6.8, 3.0, 5.5, 2.1], [5.7, 2.5, 5.0, 2.0], [5.8, 2.8, 5.1, 2.4], [6.4, 3.2, 5.3, 2.3], [6.5, 3.0, 5.5, 1.8], [7.7, 3.8, 6.7, 2.2], [7.7, 2.6, 6.9, 2.3], [6.0, 2.2, 5.0, 1.5], [6.9, 3.2, 5.7, 2.3], [5.6, 2.8, 4.9, 2.0], [7.7, 2.8, 6.7, 2.0], [6.3, 2.7, 4.9, 1.8], [6.7, 3.3, 5.7, 2.1], [7.2, 3.2, 6.0, 1.8], [6.2, 2.8, 4.8, 1.8], [6.1, 3.0, 4.9, 1.8], [6.4, 2.8, 5.6, 2.1], [7.2, 3.0, 5.8, 1.6], [7.4, 2.8, 6.1, 1.9], [7.9, 3.8, 6.4, 2.0], [6.4, 2.8, 5.6, 2.2], [6.3, 2.8, 5.1, 1.5], [6.1, 2.6, 5.6, 1.4], [7.7, 3.0, 6.1, 2.3], [6.3, 3.4, 5.6, 2.4], [6.4, 3.1, 5.5, 1.8], [6.0, 3.0, 4.8, 1.8], [6.9, 3.1, 5.4, 2.1], [6.7, 3.1, 5.6, 2.4], [6.9, 3.1, 5.1, 2.3], [5.8, 2.7, 5.1, 1.9], [6.8, 3.2, 5.9, 2.3], [6.7, 3.3, 5.7, 2.5], [6.7, 3.0, 5.2, 2.3], [6.3, 2.5, 5.0, 1.9], [6.5, 3.0, 5.2, 2.0], [6.2, 3.4, 5.4, 2.3], [5.9, 3.0, 5.1, 1.8]
];
var schema = [
  {name: 'Sepal_length', index: 0, text: 'Sepal_length'},
  {name: 'Sepal_width', index: 1, text: 'Sepal_width'},
  {name: 'Petal_length', index: 2, text: 'Petal_length'},
  {name: 'Petal_width', index: 3, text: 'Petal_width'},
];

var lineStyle = {
  normal: {
    width: 1,
    opacity: 0.5
  }
};

option = {
  legend: {
    top: 0,
    data:['Iris-setosa','Iris-versicolor','Iris-virginica'],
    itemGap: 10
  },
  parallelAxis: [
    {dim: 0, name: schema[0].text},
    {dim: 1, name: schema[1].text},
    {dim: 2, name: schema[2].text},
  ],
  parallel: {
    left: '5%',
    right: '13%',
    bottom: '10%',
    top: '15%',
    parallelAxisDefault: {
      type: 'value',
      name: '平行坐标',
      nameLocation: 'end',
      nameGap: 20,
      nameTextStyle: {
        fontSize: 12
      }
    }
  },
  series: [
    {
      name: 'Iris-setosa',
      type: 'parallel',
      lineStyle: lineStyle,
      data: data1
    },
    {
      name: 'Iris-versicolor',
      type: 'parallel',
      lineStyle: lineStyle,
      data: data2
    },
    {
      name: 'Iris-virginica',
      type: 'parallel',
      lineStyle: lineStyle,
      data: data3
    },
  ]  
};

打完收工,各位小兄dei,快点点赞啊,不然我胖虎用小拳拳锤死在座的各位,记住是全部。。。。。

以上这篇Python实现平行坐标图的两种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中计算三角函数之cos()方法的使用简介
May 15 Python
Saltstack快速入门简单汇总
Mar 01 Python
Python HTTP客户端自定义Cookie实现实例
Apr 28 Python
速记Python布尔值
Nov 09 Python
详解Django+uwsgi+Nginx上线最佳实战
Mar 14 Python
python或C++读取指定文件夹下的所有图片
Aug 31 Python
python实现代码统计器
Sep 19 Python
Python模块future用法原理详解
Jan 20 Python
Pycharm2020.1安装无法启动问题即设置中文插件的方法
Aug 07 Python
python中scrapy处理项目数据的实例分析
Nov 22 Python
如何用Python徒手写线性回归
Jan 25 Python
python解析json数据
Apr 29 Python
Python 图像处理: 生成二维高斯分布蒙版的实例
Jul 04 #Python
Django实现微信小程序的登录验证功能并维护登录态
Jul 04 #Python
libreoffice python 操作word及excel文档的方法
Jul 04 #Python
Python实现12306火车票抢票系统
Jul 04 #Python
如何利用Pyecharts可视化微信好友
Jul 04 #Python
python 获取等间隔的数组实例
Jul 04 #Python
python 中pyqt5 树节点点击实现多窗口切换问题
Jul 04 #Python
You might like
咖啡语言
2021/03/03 咖啡文化
phpMyAdmin安装并配置允许空密码登录
2015/07/04 PHP
PHP读取文件的常见几种方法
2016/11/03 PHP
javascript中检测变量的类型的代码
2010/12/28 Javascript
用nodejs访问ActiveX对象,以操作Access数据库为例。
2011/12/15 NodeJs
使用insertAfter()方法在现有元素后添加一个新元素
2014/05/28 Javascript
JavaScript汉诺塔问题解决方法
2015/04/21 Javascript
JavaScript实现仿网易通行证表单验证
2015/05/25 Javascript
JavaScript中length属性的使用方法
2015/06/05 Javascript
JS中用EL表达式获取上下文参数值的方法
2018/03/28 Javascript
JS内部事件机制之单线程原理
2018/07/02 Javascript
no-vnc和node.js实现web远程桌面的完整步骤
2019/08/11 Javascript
通过GASP让vue实现动态效果实例代码详解
2019/11/24 Javascript
vue动态加载SVG文件并修改节点数据的操作代码
2020/08/17 Javascript
TensorFlow入门使用 tf.train.Saver()保存模型
2018/04/24 Python
python pandas库中DataFrame对行和列的操作实例讲解
2018/06/09 Python
Python反射和内置方法重写操作详解
2018/08/27 Python
Python3基于plotly模块保存图片表格
2020/08/03 Python
详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系
2020/08/04 Python
浅谈Python 钉钉报警必备知识系统讲解
2020/08/17 Python
Python GUI之tkinter窗口视窗教程大集合(推荐)
2020/10/20 Python
python连接mongodb数据库操作数据示例
2020/11/30 Python
对Pytorch 中的contiguous理解说明
2021/03/03 Python
HTML5安全介绍之内容安全策略(CSP)简介
2012/07/10 HTML / CSS
杭州联环马网络笔试题面试题
2013/08/04 面试题
财会自我鉴定范文
2013/12/27 职场文书
测量工程专业求职信
2014/02/24 职场文书
课例研修方案
2014/05/31 职场文书
机械操作工岗位职责
2014/08/08 职场文书
融资合作协议书范本
2014/10/17 职场文书
群众路线教育实践活动心得体会(教师)
2014/10/31 职场文书
大学生党员个人总结
2015/02/13 职场文书
谢师宴家长答谢词
2015/09/30 职场文书
搞笑婚礼主持词开场白
2015/11/24 职场文书
2019年干货:自我鉴定
2019/03/25 职场文书
Python使用Kubernetes API访问集群
2021/05/30 Python