Python数据可视化库seaborn的使用总结


Posted in Python onJanuary 15, 2019

seaborn是python中的一个非常强大的数据可视化库,它集成了matplotlib,下图为seaborn的官网,如果遇到疑惑的地方可以到官网查看。http://seaborn.pydata.org/

Python数据可视化库seaborn的使用总结

从官网的主页我们就可以看出,seaborn在数据可视化上真的非常强大。

1.首先我们还是需要先引入库,不过这次要用到的python库比较多。

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

2.sns.set_style():不传入参数用的就是seaborn默认的主题风格,里面的参数共有五种

  • darkgrid
  • whitegrid
  • dark
  • white
  • ticks

我比较习惯用whitegrid。

Python数据可视化库seaborn的使用总结

3.下面说一下seaborn里面的调色板,我们可以用sns.color_palette()获取到这些颜色,然后用sns.palplot()将这些色块打印出来。color_palette()函数还可以传入一些参数

sns.palplot(sns.color_palette("hls",n))#显示出n个不同颜色的色块
sns.palplot(sns.color_palette("Paired",2n))#显示出2n个不同颜色的色块,且这些颜色两两之间是相近的
sns.palplot(sns.color_palette("color"))#由浅入深显示出同一颜色的色块
sns.palplot(sns.color_palette("color_r"))##由深入浅显示出同一颜色的色块
sns.palplot(sns.color_palette("cubehelix",n))#显示出n个颜色呈线性变化的色块
sns.palplot(sns.cubehelix_palette(k,start=m,rot=n))#显示出k个start(0,3)为m,rot(-1,1)为n的呈线性变化的色块
sns.palplot(sns.light_palette("color"))#将一种颜色由浅到深显示
sns.palplot(sns.dark_palette("color"))#将一种颜色由深到浅显示
sns.palplot(sns.dark_palette("color",reverse=bool))#reverse的值为False,则将一种颜色由深到浅显示;若为True,则将一种颜色由浅到深显示

Python数据可视化库seaborn的使用总结

Python数据可视化库seaborn的使用总结

Python数据可视化库seaborn的使用总结

4.sns.kdeplot(x,y,cmap=pal):绘制核密度分布图。

Python数据可视化库seaborn的使用总结

5.sns.distplot(x,kde=bool,bins=n):kde代表是否进行核密度估计,也就是是否绘制包络线,bins指定绘制的条形数目。

Python数据可视化库seaborn的使用总结

6.根据均值和协方差绘图:

首先我们要根据均值和协方差获取数据

mean,cov = [m,n],[(a,b),(c,d)]#指定均值和协方差
data = np.random.multivariate_normal(mean,cov,e)#根据均值和协方差获取e个随机数据
df = pd.DataFrame(data,columns=["x","y"])#将数据指定为DataFrame格式
df

Python数据可视化库seaborn的使用总结

然后绘制图像

sns.jointplot(x="x",y="y",data=df) #绘制散点图

Python数据可视化库seaborn的使用总结

sns.jointplot(x="x",y="y",data=df)可以绘制出x和y单变量的条形图以及x与y多变量的散点图。

7.在jointplot()函数中传入kind=“hex”,能够在数据量比较大时让我们更清晰地看到数据的分布比重。

x,y = np.random.multivariate_normal(mean,cov,2000).T
with sns.axes_style("white"):
  sns.jointplot(x=x,y=y,kind="hex",color="c")

绘制出的图像如下

Python数据可视化库seaborn的使用总结

8.sns.pairplot(df):绘制出各变量之间的散点图与条形图,且对角线均为条形图。

Python数据可视化库seaborn的使用总结

在这里我们可以先使用df = sns.load_dataset("")将seaborn中原本带有的数据读入或用pandas读取。

9.绘制回归分析图:这里可以用两个函数regplot()lmplot(),用regplot()更好一些。

Python数据可视化库seaborn的使用总结

如果两个变量不适合做回归分析,我们可以传入x_jitter()y_jitter()让x轴或y轴的数据轻微抖动一些,得出较为准确的结果。

Python数据可视化库seaborn的使用总结

10.sns.stripplot(x="",y="",data=df,jitter=bool):绘制一个特征变量中的多个变量与另一变量关系的散点图,jitter控制数据是否抖动。

Python数据可视化库seaborn的使用总结

11.sns.swarmplot(x="",y="",hue="",data=df):绘制页状散点图,hue指定对数据的分类,由于在大量数据下,上面的散点图会影响到我们对数据的观察,这种图能够更清晰地观察到数据分布。

Python数据可视化库seaborn的使用总结

Python数据可视化库seaborn的使用总结

12.sns.boxplot(x="",y="",hue="",data=df,orient="h"):绘制盒形图,hue同样指定对数据的分类。在统计学中有四分位数的概念,第一个四分位记做Q1,第二个四分位数记做Q2,第三个四分位数记做Q3,Q3-Q1得到的结果Q叫做四分位距,如果一个数n,n的范围是n<Q1-1.5Q或n>Q3+1.5Q,则称n为离群点,也就是不符合数据规范的点,利用盒形图可以很清晰地观察到离群点。如果传入orient则画出的盒形图是横向的。

Python数据可视化库seaborn的使用总结

13.sns.violinplot(x="",y="",data=df,hue="",split=bool):绘制小提琴图,split表示是否将两类数据分开绘制,如果为True,则不分开绘制,默认为False。

Python数据可视化库seaborn的使用总结

Python数据可视化库seaborn的使用总结

14.还可以将页状散点图和小提琴图在一起绘制,只需将两个绘图命令

Python数据可视化库seaborn的使用总结

inner="None"表示去除小提琴图内部的形状。

15.sns.barplot(x="",y="",hue="",data=df):按hue的数据分类绘制条形图。

Python数据可视化库seaborn的使用总结

16.sns.pointplot(x="",y="",hue="",data=df):绘制点图,点图可以更好的描述数据的变化差异。

Python数据可视化库seaborn的使用总结

17.我们还可以传入其他参数:

sns.pointplot(x="class",y="survived",hue="sex",data=titanic,
       palette={"male":"#02ff96","female":"#0980e6"},#指定曲线的颜色
       markers=["s","d"],linestyles=["-","-."])#指定曲线的点型和线型

绘制出的图像如下

Python数据可视化库seaborn的使用总结

18.sns.factorplot(x="", y="", hue="", data=df):绘制多层面板分类图。

sns.factorplot(x="day",y="total_bill",hue="smoker",data=tips)

绘制的图像如下

Python数据可视化库seaborn的使用总结

19.sns.factorplot(x="",y="",hue="",data=df,kind=""):kind中指定要画图的类型。

sns.factorplot(x="day",y="total_bill",hue="smoker",data=tips,kind="bar")

Python数据可视化库seaborn的使用总结

sns.factorplot(x="day",y="total_bill",hue="smoker",col="time",data=tips,kind="swarm")

Python数据可视化库seaborn的使用总结

sns.factorplot(x="time",y="total_bill",hue="smoker",col="day",data=tips,kind="box",size=5,aspect=0.8) #aspect指定横纵比

Python数据可视化库seaborn的使用总结

20.sns.factorplot()的参数:

  • x,y,hue 数据集变量 变量名。
  • date 数据集 数据集名。
  • row,col 更多分类变量进行平铺显示 变量名。
  • col_wrap 每行的最高平铺数 整数。
  • estimator 在每个分类中进行矢量到标量的映射 矢量。
  • ci 置信区间 浮点数或None。
  • n_boot 计算置信区间时使用的引导迭代次数 整数。
  • units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据。
  • order, hue_order 对应排序列表 字符串列表。
  • row_order, col_order 对应排序列表 字符串列表。
  • kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点 size 每个面的高度(英寸) 标量 aspect 纵横比 标量 orient 方向 "v"/"h" color 颜色 matplotlib颜色 palette 调色板 seaborn颜色色板或字典 legend hue的信息面板 True/False legend_out 是否扩展图形,并将信息框绘制在中心右边 True/False share{x,y} 共享轴线 True/False。

21.sns.FacetGrid():这是一个很重要的绘图函数。

g = sns.FacetGrid(tips,col="time")
g.map(plt.hist,"tip")

Python数据可视化库seaborn的使用总结

g = sns.FacetGrid(tips,col="sex",hue="smoker",size=5,aspect=1)
g.map(plt.scatter,"total_bill","tip",alpha=0.3,s=100)#alpha指定点的透明度,s指定点的大小
g.add_legend()#添加图例

Python数据可视化库seaborn的使用总结

g = sns.FacetGrid(tips,col="day",size=4,aspect=0.8)
g.map(sns.barplot,"sex","total_bill")

Python数据可视化库seaborn的使用总结

22.sns.PairGrid():将各变量间的关系成对绘制。

iris = sns.load_dataset("iris")
g = sns.PairGrid(iris)
g.map(plt.scatter)

Python数据可视化库seaborn的使用总结

23.g.map_diag()g.map_offdiag():绘制对角线和非对角线的图形

g = sns.PairGrid(iris)
g.map_diag(plt.hist)  #指定对角线绘图类型
g.map_offdiag(plt.scatter)  #指定非对角线绘图类型

Python数据可视化库seaborn的使用总结

g = sns.PairGrid(iris, hue="species")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()

Python数据可视化库seaborn的使用总结

g = sns.PairGrid(iris, vars=["sepal_length", "sepal_width"], hue="species",size=3)
g.map(plt.scatter)

Python数据可视化库seaborn的使用总结

g = sns.PairGrid(tips, hue="size", palette="GnBu_d")
g.map(plt.scatter, s=50, edgecolor="white")
g.add_legend()

Python数据可视化库seaborn的使用总结

24.sns.heatmap():绘制热度图,热度图可以很清楚看到数据的变化情况以及变化过程中的最大值和最小值。

uniform_data = np.random.rand(3, 3)
print (uniform_data)
heatmap = sns.heatmap(uniform_data)

Python数据可视化库seaborn的使用总结

25.向heatmap()中传入参数vmin=vmax=

ax = sns.heatmap(uniform_data,vmin=0.2,vmax=0.5) 
#超过最大值都是最大值的颜色,小于最小值都是最小值的颜色

Python数据可视化库seaborn的使用总结

26.

normal_data = np.random.randn(3, 3)
print (normal_data)
ax = sns.heatmap(normal_data, center=0)  #center指定右侧图例的中心值

Python数据可视化库seaborn的使用总结

27.

flights = sns.load_dataset("flights")
flights = flights.pivot("month", "year", "passengers")
ax = sns.heatmap(flights, annot=True,fmt="d",linewidth=0.5)  
#annot指定是否显示数据,fmt指定数据的显示格式,linewidth指定数据格子间的距离

Python数据可视化库seaborn的使用总结

28.

ax = sns.heatmap(flights, cmap="YlGnBu",cbar=True) 
#cmap指定图形颜色,cbar表示是否绘制右侧图例。

Python数据可视化库seaborn的使用总结

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python进程通信之匿名管道实例讲解
Apr 11 Python
Python实现对字符串的加密解密方法示例
Apr 29 Python
利用Django内置的认证视图实现用户密码重置功能详解
Nov 24 Python
基于Python pip用国内镜像下载的方法
Jun 12 Python
Python编程中flask的简介与简单使用
Dec 28 Python
python三引号输出方法
Feb 27 Python
Python两台电脑实现TCP通信的方法示例
May 06 Python
Python3 虚拟开发环境搭建过程(图文详解)
Jan 06 Python
python爬虫开发之urllib模块详细使用方法与实例全解
Mar 09 Python
Python把图片转化为pdf代码实例
Jul 28 Python
常用的Python代码调试工具总结
Jun 23 Python
Python装饰器详细介绍
Mar 25 Python
使用Django连接Mysql数据库步骤
Jan 15 #Python
Django框架模板介绍
Jan 15 #Python
python使用PIL实现多张图片垂直合并
Jan 15 #Python
python实现多张图片拼接成大图
Jan 15 #Python
解决新版Pycharm中Matplotlib图像不在弹出独立的显示窗口问题
Jan 15 #Python
python实现创建新列表和新字典,并使元素及键值对全部变成小写
Jan 15 #Python
Python数据可视化之画图
Jan 15 #Python
You might like
IIS7.X配置PHP运行环境小结
2011/06/09 PHP
PHP使用Curl实现模拟登录及抓取数据功能示例
2018/04/27 PHP
PHP中检查isset()和!empty()函数的必要性
2019/02/13 PHP
TP5框架页面跳转样式操作示例
2020/04/05 PHP
phpcmsv9.0任意文件上传漏洞解析
2020/10/20 PHP
自适应高度框架 ----属个人收藏内容
2007/01/22 Javascript
javascript之典型高阶函数应用介绍
2013/01/10 Javascript
JavaScript获取页面中第一个锚定文本的方法
2015/04/03 Javascript
jQuery插件ImageDrawer.js实现动态绘制图片动画(附源码下载)
2016/02/25 Javascript
HTML5+jQuery插件Quicksand实现超酷的星际争霸2兵种分类展示效果(附demo源码下载)
2016/05/25 Javascript
import与export在node.js中的使用详解
2017/09/28 Javascript
JavaScript实现微信号随机切换代码
2018/03/09 Javascript
微信小程序实现上传图片功能
2018/05/28 Javascript
vue+element的表格实现批量删除功能示例代码
2018/08/17 Javascript
微信小程序实现搜索历史功能
2020/03/26 Javascript
微信小程序加载机制及运行机制图解
2019/11/27 Javascript
js实现轮播图特效
2020/05/28 Javascript
使用Element的InfiniteScroll 无限滚动组件报错的解决
2020/07/27 Javascript
利用aardio给python编写图形界面
2017/08/21 Python
对python 各种删除文件失败的处理方式分享
2018/04/24 Python
python中的变量如何开辟内存
2018/06/26 Python
详解将Pandas中的DataFrame类型转换成Numpy中array类型的三种方法
2019/07/06 Python
Django 如何使用日期时间选择器规范用户的时间输入示例代码详解
2020/05/22 Python
Softmax函数原理及Python实现过程解析
2020/05/22 Python
tensorflow使用L2 regularization正则化修正overfitting过拟合方式
2020/05/22 Python
Python3爬虫中Ajax的用法
2020/07/10 Python
使用python操作lmdb对数据读取的实例
2020/12/11 Python
jupyter 添加不同内核的操作
2021/02/06 Python
Bugatchi官方网站:男士服装在线
2019/04/10 全球购物
业务部主管岗位职责
2014/01/29 职场文书
农村婚庆司仪主持词
2014/03/15 职场文书
高中生期中考试失利检讨书
2014/10/23 职场文书
写给女朋友的检讨书
2015/05/06 职场文书
网络新闻该怎么写?这些写作技巧你都知道吗?
2019/08/26 职场文书
vue实现可拖拽的dialog弹框
2021/05/13 Vue.js
java项目构建Gradle的使用教程
2022/03/24 Java/Android