Python数据可视化库seaborn的使用总结


Posted in Python onJanuary 15, 2019

seaborn是python中的一个非常强大的数据可视化库,它集成了matplotlib,下图为seaborn的官网,如果遇到疑惑的地方可以到官网查看。http://seaborn.pydata.org/

Python数据可视化库seaborn的使用总结

从官网的主页我们就可以看出,seaborn在数据可视化上真的非常强大。

1.首先我们还是需要先引入库,不过这次要用到的python库比较多。

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

2.sns.set_style():不传入参数用的就是seaborn默认的主题风格,里面的参数共有五种

  • darkgrid
  • whitegrid
  • dark
  • white
  • ticks

我比较习惯用whitegrid。

Python数据可视化库seaborn的使用总结

3.下面说一下seaborn里面的调色板,我们可以用sns.color_palette()获取到这些颜色,然后用sns.palplot()将这些色块打印出来。color_palette()函数还可以传入一些参数

sns.palplot(sns.color_palette("hls",n))#显示出n个不同颜色的色块
sns.palplot(sns.color_palette("Paired",2n))#显示出2n个不同颜色的色块,且这些颜色两两之间是相近的
sns.palplot(sns.color_palette("color"))#由浅入深显示出同一颜色的色块
sns.palplot(sns.color_palette("color_r"))##由深入浅显示出同一颜色的色块
sns.palplot(sns.color_palette("cubehelix",n))#显示出n个颜色呈线性变化的色块
sns.palplot(sns.cubehelix_palette(k,start=m,rot=n))#显示出k个start(0,3)为m,rot(-1,1)为n的呈线性变化的色块
sns.palplot(sns.light_palette("color"))#将一种颜色由浅到深显示
sns.palplot(sns.dark_palette("color"))#将一种颜色由深到浅显示
sns.palplot(sns.dark_palette("color",reverse=bool))#reverse的值为False,则将一种颜色由深到浅显示;若为True,则将一种颜色由浅到深显示

Python数据可视化库seaborn的使用总结

Python数据可视化库seaborn的使用总结

Python数据可视化库seaborn的使用总结

4.sns.kdeplot(x,y,cmap=pal):绘制核密度分布图。

Python数据可视化库seaborn的使用总结

5.sns.distplot(x,kde=bool,bins=n):kde代表是否进行核密度估计,也就是是否绘制包络线,bins指定绘制的条形数目。

Python数据可视化库seaborn的使用总结

6.根据均值和协方差绘图:

首先我们要根据均值和协方差获取数据

mean,cov = [m,n],[(a,b),(c,d)]#指定均值和协方差
data = np.random.multivariate_normal(mean,cov,e)#根据均值和协方差获取e个随机数据
df = pd.DataFrame(data,columns=["x","y"])#将数据指定为DataFrame格式
df

Python数据可视化库seaborn的使用总结

然后绘制图像

sns.jointplot(x="x",y="y",data=df) #绘制散点图

Python数据可视化库seaborn的使用总结

sns.jointplot(x="x",y="y",data=df)可以绘制出x和y单变量的条形图以及x与y多变量的散点图。

7.在jointplot()函数中传入kind=“hex”,能够在数据量比较大时让我们更清晰地看到数据的分布比重。

x,y = np.random.multivariate_normal(mean,cov,2000).T
with sns.axes_style("white"):
  sns.jointplot(x=x,y=y,kind="hex",color="c")

绘制出的图像如下

Python数据可视化库seaborn的使用总结

8.sns.pairplot(df):绘制出各变量之间的散点图与条形图,且对角线均为条形图。

Python数据可视化库seaborn的使用总结

在这里我们可以先使用df = sns.load_dataset("")将seaborn中原本带有的数据读入或用pandas读取。

9.绘制回归分析图:这里可以用两个函数regplot()lmplot(),用regplot()更好一些。

Python数据可视化库seaborn的使用总结

如果两个变量不适合做回归分析,我们可以传入x_jitter()y_jitter()让x轴或y轴的数据轻微抖动一些,得出较为准确的结果。

Python数据可视化库seaborn的使用总结

10.sns.stripplot(x="",y="",data=df,jitter=bool):绘制一个特征变量中的多个变量与另一变量关系的散点图,jitter控制数据是否抖动。

Python数据可视化库seaborn的使用总结

11.sns.swarmplot(x="",y="",hue="",data=df):绘制页状散点图,hue指定对数据的分类,由于在大量数据下,上面的散点图会影响到我们对数据的观察,这种图能够更清晰地观察到数据分布。

Python数据可视化库seaborn的使用总结

Python数据可视化库seaborn的使用总结

12.sns.boxplot(x="",y="",hue="",data=df,orient="h"):绘制盒形图,hue同样指定对数据的分类。在统计学中有四分位数的概念,第一个四分位记做Q1,第二个四分位数记做Q2,第三个四分位数记做Q3,Q3-Q1得到的结果Q叫做四分位距,如果一个数n,n的范围是n<Q1-1.5Q或n>Q3+1.5Q,则称n为离群点,也就是不符合数据规范的点,利用盒形图可以很清晰地观察到离群点。如果传入orient则画出的盒形图是横向的。

Python数据可视化库seaborn的使用总结

13.sns.violinplot(x="",y="",data=df,hue="",split=bool):绘制小提琴图,split表示是否将两类数据分开绘制,如果为True,则不分开绘制,默认为False。

Python数据可视化库seaborn的使用总结

Python数据可视化库seaborn的使用总结

14.还可以将页状散点图和小提琴图在一起绘制,只需将两个绘图命令

Python数据可视化库seaborn的使用总结

inner="None"表示去除小提琴图内部的形状。

15.sns.barplot(x="",y="",hue="",data=df):按hue的数据分类绘制条形图。

Python数据可视化库seaborn的使用总结

16.sns.pointplot(x="",y="",hue="",data=df):绘制点图,点图可以更好的描述数据的变化差异。

Python数据可视化库seaborn的使用总结

17.我们还可以传入其他参数:

sns.pointplot(x="class",y="survived",hue="sex",data=titanic,
       palette={"male":"#02ff96","female":"#0980e6"},#指定曲线的颜色
       markers=["s","d"],linestyles=["-","-."])#指定曲线的点型和线型

绘制出的图像如下

Python数据可视化库seaborn的使用总结

18.sns.factorplot(x="", y="", hue="", data=df):绘制多层面板分类图。

sns.factorplot(x="day",y="total_bill",hue="smoker",data=tips)

绘制的图像如下

Python数据可视化库seaborn的使用总结

19.sns.factorplot(x="",y="",hue="",data=df,kind=""):kind中指定要画图的类型。

sns.factorplot(x="day",y="total_bill",hue="smoker",data=tips,kind="bar")

Python数据可视化库seaborn的使用总结

sns.factorplot(x="day",y="total_bill",hue="smoker",col="time",data=tips,kind="swarm")

Python数据可视化库seaborn的使用总结

sns.factorplot(x="time",y="total_bill",hue="smoker",col="day",data=tips,kind="box",size=5,aspect=0.8) #aspect指定横纵比

Python数据可视化库seaborn的使用总结

20.sns.factorplot()的参数:

  • x,y,hue 数据集变量 变量名。
  • date 数据集 数据集名。
  • row,col 更多分类变量进行平铺显示 变量名。
  • col_wrap 每行的最高平铺数 整数。
  • estimator 在每个分类中进行矢量到标量的映射 矢量。
  • ci 置信区间 浮点数或None。
  • n_boot 计算置信区间时使用的引导迭代次数 整数。
  • units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据。
  • order, hue_order 对应排序列表 字符串列表。
  • row_order, col_order 对应排序列表 字符串列表。
  • kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点 size 每个面的高度(英寸) 标量 aspect 纵横比 标量 orient 方向 "v"/"h" color 颜色 matplotlib颜色 palette 调色板 seaborn颜色色板或字典 legend hue的信息面板 True/False legend_out 是否扩展图形,并将信息框绘制在中心右边 True/False share{x,y} 共享轴线 True/False。

21.sns.FacetGrid():这是一个很重要的绘图函数。

g = sns.FacetGrid(tips,col="time")
g.map(plt.hist,"tip")

Python数据可视化库seaborn的使用总结

g = sns.FacetGrid(tips,col="sex",hue="smoker",size=5,aspect=1)
g.map(plt.scatter,"total_bill","tip",alpha=0.3,s=100)#alpha指定点的透明度,s指定点的大小
g.add_legend()#添加图例

Python数据可视化库seaborn的使用总结

g = sns.FacetGrid(tips,col="day",size=4,aspect=0.8)
g.map(sns.barplot,"sex","total_bill")

Python数据可视化库seaborn的使用总结

22.sns.PairGrid():将各变量间的关系成对绘制。

iris = sns.load_dataset("iris")
g = sns.PairGrid(iris)
g.map(plt.scatter)

Python数据可视化库seaborn的使用总结

23.g.map_diag()g.map_offdiag():绘制对角线和非对角线的图形

g = sns.PairGrid(iris)
g.map_diag(plt.hist)  #指定对角线绘图类型
g.map_offdiag(plt.scatter)  #指定非对角线绘图类型

Python数据可视化库seaborn的使用总结

g = sns.PairGrid(iris, hue="species")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()

Python数据可视化库seaborn的使用总结

g = sns.PairGrid(iris, vars=["sepal_length", "sepal_width"], hue="species",size=3)
g.map(plt.scatter)

Python数据可视化库seaborn的使用总结

g = sns.PairGrid(tips, hue="size", palette="GnBu_d")
g.map(plt.scatter, s=50, edgecolor="white")
g.add_legend()

Python数据可视化库seaborn的使用总结

24.sns.heatmap():绘制热度图,热度图可以很清楚看到数据的变化情况以及变化过程中的最大值和最小值。

uniform_data = np.random.rand(3, 3)
print (uniform_data)
heatmap = sns.heatmap(uniform_data)

Python数据可视化库seaborn的使用总结

25.向heatmap()中传入参数vmin=vmax=

ax = sns.heatmap(uniform_data,vmin=0.2,vmax=0.5) 
#超过最大值都是最大值的颜色,小于最小值都是最小值的颜色

Python数据可视化库seaborn的使用总结

26.

normal_data = np.random.randn(3, 3)
print (normal_data)
ax = sns.heatmap(normal_data, center=0)  #center指定右侧图例的中心值

Python数据可视化库seaborn的使用总结

27.

flights = sns.load_dataset("flights")
flights = flights.pivot("month", "year", "passengers")
ax = sns.heatmap(flights, annot=True,fmt="d",linewidth=0.5)  
#annot指定是否显示数据,fmt指定数据的显示格式,linewidth指定数据格子间的距离

Python数据可视化库seaborn的使用总结

28.

ax = sns.heatmap(flights, cmap="YlGnBu",cbar=True) 
#cmap指定图形颜色,cbar表示是否绘制右侧图例。

Python数据可视化库seaborn的使用总结

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
从零学Python之入门(三)序列
May 25 Python
python调用机器喇叭发出蜂鸣声(Beep)的方法
Mar 23 Python
Python base64编码解码实例
Jun 21 Python
详解字典树Trie结构及其Python代码实现
Jun 03 Python
浅析Python中return和finally共同挖的坑
Aug 18 Python
python中使用%与.format格式化文本方法解析
Dec 27 Python
Python使用base64模块进行二进制数据编码详解
Jan 11 Python
python实现简易数码时钟
Feb 19 Python
python实现五子棋小程序
Jun 18 Python
基于pytorch 预训练的词向量用法详解
Jan 06 Python
Python3.7安装pyaudio教程解析
Jul 24 Python
python在linux环境下安装skimage的示例代码
Oct 14 Python
使用Django连接Mysql数据库步骤
Jan 15 #Python
Django框架模板介绍
Jan 15 #Python
python使用PIL实现多张图片垂直合并
Jan 15 #Python
python实现多张图片拼接成大图
Jan 15 #Python
解决新版Pycharm中Matplotlib图像不在弹出独立的显示窗口问题
Jan 15 #Python
python实现创建新列表和新字典,并使元素及键值对全部变成小写
Jan 15 #Python
Python数据可视化之画图
Jan 15 #Python
You might like
php&amp;mysql 日期操作小记
2012/02/27 PHP
Server.HTMLEncode让代码在页面里显示为源代码
2013/12/08 PHP
PHP中的empty、isset、isnull的区别与使用实例
2019/03/22 PHP
js中将字符串转换成json的三种方式
2011/01/12 Javascript
kmock javascript 单元测试代码
2011/02/06 Javascript
各浏览器对link标签onload/onreadystatechange事件支持的差异分析
2011/04/27 Javascript
JS返回上一页实例代码通过图片和按钮分别实现
2013/08/16 Javascript
JS实现控制表格只显示行边框或者只显示列边框的方法
2015/03/31 Javascript
JavaScript中的Function函数
2015/08/27 Javascript
WordPress中鼠标悬停显示和隐藏评论及引用按钮的实现
2016/01/12 Javascript
JavaScript对象数组如何按指定属性和排序方向进行排序
2016/06/15 Javascript
js html css实现复选框全选与反选
2016/10/09 Javascript
模板视图和AngularJS之间冲突的解决方法
2016/11/22 Javascript
js仿网易表单及时验证功能
2017/03/07 Javascript
20行js代码实现的贪吃蛇小游戏
2017/06/20 Javascript
使用mock.js随机数据和使用express输出json接口的实现方法
2018/01/07 Javascript
vue使用jsonp抓取qq音乐数据的方法
2018/06/21 Javascript
koa大型web项目中使用路由装饰器的方法示例
2019/04/02 Javascript
js常用方法、检查是否有特殊字符串、倒序截取字符串操作完整示例
2020/01/26 Javascript
压缩Vue.js打包后的体积方法总结(Vue.js打包后体积过大问题)
2020/02/03 Javascript
[01:00:14]DOTA2官方TI8总决赛纪录片 真视界True Sight
2019/01/16 DOTA
介绍Python的@property装饰器的用法
2015/04/28 Python
Django的数据模型访问多对多键值的方法
2015/07/21 Python
python读取有密码的zip压缩文件实例
2019/02/08 Python
在python中,使用scatter绘制散点图的实例
2019/07/03 Python
python实现在函数图像上添加文字和标注的方法
2019/07/08 Python
Python随机函数库random的使用方法详解
2019/08/21 Python
使用python 对验证码图片进行降噪处理
2019/12/18 Python
Python基于Tensor FLow的图像处理操作详解
2020/01/15 Python
python 的topk算法实例
2020/04/02 Python
QML实现钟表效果
2020/06/02 Python
澳大利亚最大的女装零售商:Millers
2017/09/10 全球购物
会计电算化专业应届大学生求职信
2013/10/22 职场文书
职业教育毕业生求职信
2013/11/09 职场文书
《蓝色的树叶》教学反思
2014/02/24 职场文书
2014年初中班主任工作总结
2014/11/08 职场文书