八大排序算法的Python实现


Posted in Python onJanuary 28, 2021

Python实现八大排序算法,具体内容如下

1、插入排序

描述

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。

代码实现

def insert_sort(lists):
 # 插入排序
 count = len(lists)
 for i in range(1, count):
  key = lists[i]
  j = i - 1
  while j >= 0:
   if lists[j] > key:
    lists[j + 1] = lists[j]
    lists[j] = key
   j -= 1
 return lists

2、希尔排序

描述

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

代码实现

def shell_sort(lists):
 # 希尔排序
 count = len(lists)
 step = 2
 group = count / step
 while group > 0:
  for i in range(0, group):
   j = i + group
   while j < count:
    k = j - group
    key = lists[j]
    while k >= 0:
     if lists[k] > key:
      lists[k + group] = lists[k]
      lists[k] = key
     k -= group
    j += group
  group /= step
 return lists

3、冒泡排序

描述

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

代码实现

def bubble_sort(lists):
 # 冒泡排序
 count = len(lists)
 for i in range(0, count):
  for j in range(i + 1, count):
   if lists[i] > lists[j]:
    lists[i], lists[j] = lists[j], lists[i]
 return lists

4、快速排序

描述

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码实现

def quick_sort(lists, left, right):
 # 快速排序
 if left >= right:
  return lists
 key = lists[left]
 low = left
 high = right
 while left < right:
  while left < right and lists[right] >= key:
   right -= 1
  lists[left] = lists[right]
  while left < right and lists[left] <= key:
   left += 1
  lists[right] = lists[left]
 lists[right] = key
 quick_sort(lists, low, left - 1)
 quick_sort(lists, left + 1, high)
 return lists

5、直接选择排序

描述

基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

代码实现

def select_sort(lists):
 # 选择排序
 count = len(lists)
 for i in range(0, count):
  min = i
  for j in range(i + 1, count):
   if lists[min] > lists[j]:
    min = j
  lists[min], lists[i] = lists[i], lists[min]
 return lists

6、堆排序

描述

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

代码实现

# 调整堆
def adjust_heap(lists, i, size):
 lchild = 2 * i + 1
 rchild = 2 * i + 2
 max = i
 if i < size / 2:
  if lchild < size and lists[lchild] > lists[max]:
   max = lchild
  if rchild < size and lists[rchild] > lists[max]:
   max = rchild
  if max != i:
   lists[max], lists[i] = lists[i], lists[max]
   adjust_heap(lists, max, size)

# 创建堆
def build_heap(lists, size):
 for i in range(0, (size/2))[::-1]:
  adjust_heap(lists, i, size)

# 堆排序
def heap_sort(lists):
 size = len(lists)
 build_heap(lists, size)
 for i in range(0, size)[::-1]:
  lists[0], lists[i] = lists[i], lists[0]
  adjust_heap(lists, 0, i)

7、归并排序

描述

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

代码实现

def merge(left, right):
 i, j = 0, 0
 result = []
 while i < len(left) and j < len(right):
  if left[i] <= right[j]:
   result.append(left[i])
   i += 1
  else:
   result.append(right[j])
   j += 1
 result += left[i:]
 result += right[j:]
 return result

def merge_sort(lists):
 # 归并排序
 if len(lists) <= 1:
  return lists
 num = len(lists) / 2
 left = merge_sort(lists[:num])
 right = merge_sort(lists[num:])
 return merge(left, right)

8、基数排序

描述

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

代码实现

import math
def radix_sort(lists, radix=10):
 k = int(math.ceil(math.log(max(lists), radix)))
 bucket = [[] for i in range(radix)]
 for i in range(1, k+1):
  for j in lists:
   bucket[j/(radix**(i-1)) % (radix**i)].append(j)
  del lists[:]
  for z in bucket:
   lists += z
   del z[:]
 return lists

以上就是Python实现八大排序算法的详细介绍,希望对大家的学习有所帮助。

Python 相关文章推荐
python先序遍历二叉树问题
Nov 10 Python
基于Django的ModelForm组件(详解)
Dec 07 Python
python使用KNN算法手写体识别
Feb 01 Python
分享一下Python数据分析常用的8款工具
Apr 29 Python
在PyCharm导航区中打开多个Project的关闭方法
Jan 17 Python
用Python逐行分析文件方法
Jan 28 Python
python Django中models进行模糊查询的示例
Jul 18 Python
python不使用for计算两组、多个矩形两两间的iou方式
Jan 18 Python
django admin 添加自定义链接方式
Mar 11 Python
Python第三方包之DingDingBot钉钉机器人
Apr 09 Python
Matplotlib中%matplotlib inline如何使用
Jul 28 Python
详解PyQt5中textBrowser显示print语句输出的简单方法
Aug 07 Python
详解C++编程中一元运算符的重载
Jan 19 #Python
Python中使用Queue和Condition进行线程同步的方法
Jan 19 #Python
简单总结Python中序列与字典的相同和不同之处
Jan 19 #Python
举例讲解如何在Python编程中进行迭代和遍历
Jan 19 #Python
Python的自动化部署模块Fabric的安装及使用指南
Jan 19 #Python
Python编程中time模块的一些关键用法解析
Jan 19 #Python
Python编程中的文件读写及相关的文件对象方法讲解
Jan 19 #Python
You might like
PHP中CURL方法curl_setopt()函数的参数分享
2013/01/19 PHP
php实现MD5加密16位(不要默认的32位)
2013/08/12 PHP
php+ajax实时输入自动搜索匹配的方法
2014/12/26 PHP
php限制文件下载速度的代码
2015/10/20 PHP
ThinkPHP3.2框架使用addAll()批量插入数据的方法
2017/03/16 PHP
php微信开发之谷歌测距
2018/06/14 PHP
一些常用的Javascript函数
2006/12/22 Javascript
Jquery Ajax请求代码(2)
2011/01/07 Javascript
JavaScript中将一个值转换为字符串的方法分析[译]
2012/09/21 Javascript
Jquery颜色选择器ColorPicker实现代码
2012/11/14 Javascript
js解析xml字符串和xml文档实现原理及代码(针对ie与火狐)
2013/02/02 Javascript
用js判断输入是否为中文的函数
2014/03/10 Javascript
window.location.hash知识汇总
2015/11/09 Javascript
Jquery EasyUI实现treegrid上显示checkbox并取选定值的方法
2016/04/29 Javascript
js仿新浪微博消息发布功能
2017/02/17 Javascript
vue-loader教程介绍
2017/06/14 Javascript
关于jQuery里prev()的简单操作代码
2017/10/27 jQuery
微信公众号H5之微信分享常见错误和问题(小结)
2019/11/14 Javascript
JS实现瀑布流效果
2020/03/07 Javascript
[01:06:18]DOTA2-DPC中国联赛 正赛 Phoenix vs Dynasty BO3 第二场 1月26日
2021/03/11 DOTA
Python与Java间Socket通信实例代码
2017/03/06 Python
Python中的id()函数指的什么
2017/10/17 Python
python 识别图片中的文字信息方法
2018/05/10 Python
Python3.0 实现决策树算法的流程
2019/08/08 Python
python网络编程之多线程同时接受和发送
2019/09/03 Python
Python字符串大小写转换拼接删除空白
2019/09/19 Python
Python telnet登陆功能实现代码
2020/04/16 Python
Python实现汇率转换操作
2020/05/03 Python
在pycharm中创建django项目的示例代码
2020/05/28 Python
屈臣氏俄罗斯在线商店:Watsons俄罗斯
2020/08/03 全球购物
实习鉴定范文
2013/12/19 职场文书
银行办理业务介绍信
2014/01/18 职场文书
合作意向书范本
2019/04/17 职场文书
你会写报告?产品体验报告到底该怎么写?
2019/08/14 职场文书
浅谈redis的过期时间设置和过期删除机制
2022/03/18 MySQL
详解Python中__new__方法的作用
2022/03/31 Python