八大排序算法的Python实现


Posted in Python onJanuary 28, 2021

Python实现八大排序算法,具体内容如下

1、插入排序

描述

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。

代码实现

def insert_sort(lists):
 # 插入排序
 count = len(lists)
 for i in range(1, count):
  key = lists[i]
  j = i - 1
  while j >= 0:
   if lists[j] > key:
    lists[j + 1] = lists[j]
    lists[j] = key
   j -= 1
 return lists

2、希尔排序

描述

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

代码实现

def shell_sort(lists):
 # 希尔排序
 count = len(lists)
 step = 2
 group = count / step
 while group > 0:
  for i in range(0, group):
   j = i + group
   while j < count:
    k = j - group
    key = lists[j]
    while k >= 0:
     if lists[k] > key:
      lists[k + group] = lists[k]
      lists[k] = key
     k -= group
    j += group
  group /= step
 return lists

3、冒泡排序

描述

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

代码实现

def bubble_sort(lists):
 # 冒泡排序
 count = len(lists)
 for i in range(0, count):
  for j in range(i + 1, count):
   if lists[i] > lists[j]:
    lists[i], lists[j] = lists[j], lists[i]
 return lists

4、快速排序

描述

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码实现

def quick_sort(lists, left, right):
 # 快速排序
 if left >= right:
  return lists
 key = lists[left]
 low = left
 high = right
 while left < right:
  while left < right and lists[right] >= key:
   right -= 1
  lists[left] = lists[right]
  while left < right and lists[left] <= key:
   left += 1
  lists[right] = lists[left]
 lists[right] = key
 quick_sort(lists, low, left - 1)
 quick_sort(lists, left + 1, high)
 return lists

5、直接选择排序

描述

基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

代码实现

def select_sort(lists):
 # 选择排序
 count = len(lists)
 for i in range(0, count):
  min = i
  for j in range(i + 1, count):
   if lists[min] > lists[j]:
    min = j
  lists[min], lists[i] = lists[i], lists[min]
 return lists

6、堆排序

描述

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

代码实现

# 调整堆
def adjust_heap(lists, i, size):
 lchild = 2 * i + 1
 rchild = 2 * i + 2
 max = i
 if i < size / 2:
  if lchild < size and lists[lchild] > lists[max]:
   max = lchild
  if rchild < size and lists[rchild] > lists[max]:
   max = rchild
  if max != i:
   lists[max], lists[i] = lists[i], lists[max]
   adjust_heap(lists, max, size)

# 创建堆
def build_heap(lists, size):
 for i in range(0, (size/2))[::-1]:
  adjust_heap(lists, i, size)

# 堆排序
def heap_sort(lists):
 size = len(lists)
 build_heap(lists, size)
 for i in range(0, size)[::-1]:
  lists[0], lists[i] = lists[i], lists[0]
  adjust_heap(lists, 0, i)

7、归并排序

描述

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

代码实现

def merge(left, right):
 i, j = 0, 0
 result = []
 while i < len(left) and j < len(right):
  if left[i] <= right[j]:
   result.append(left[i])
   i += 1
  else:
   result.append(right[j])
   j += 1
 result += left[i:]
 result += right[j:]
 return result

def merge_sort(lists):
 # 归并排序
 if len(lists) <= 1:
  return lists
 num = len(lists) / 2
 left = merge_sort(lists[:num])
 right = merge_sort(lists[num:])
 return merge(left, right)

8、基数排序

描述

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

代码实现

import math
def radix_sort(lists, radix=10):
 k = int(math.ceil(math.log(max(lists), radix)))
 bucket = [[] for i in range(radix)]
 for i in range(1, k+1):
  for j in lists:
   bucket[j/(radix**(i-1)) % (radix**i)].append(j)
  del lists[:]
  for z in bucket:
   lists += z
   del z[:]
 return lists

以上就是Python实现八大排序算法的详细介绍,希望对大家的学习有所帮助。

Python 相关文章推荐
在Python的Flask框架中实现单元测试的教程
Apr 20 Python
python 批量修改/替换数据的实例
Jul 25 Python
python 搭建简单的http server,可直接post文件的实例
Jan 03 Python
Python常见的pandas用法demo示例
Mar 16 Python
python 列表转为字典的两个小方法(小结)
Jun 28 Python
Python解析命令行读取参数之argparse模块
Jul 26 Python
django框架面向对象ORM模型继承用法实例分析
Jul 29 Python
python 一篇文章搞懂装饰器所有用法(建议收藏)
Aug 23 Python
Python破解BiliBili滑块验证码的思路详解(完美避开人机识别)
Feb 17 Python
如何通过Python3和ssl实现加密通信功能
May 09 Python
在django中form的label和verbose name的区别说明
May 20 Python
tensorflow下的图片标准化函数per_image_standardization用法
Jun 30 Python
详解C++编程中一元运算符的重载
Jan 19 #Python
Python中使用Queue和Condition进行线程同步的方法
Jan 19 #Python
简单总结Python中序列与字典的相同和不同之处
Jan 19 #Python
举例讲解如何在Python编程中进行迭代和遍历
Jan 19 #Python
Python的自动化部署模块Fabric的安装及使用指南
Jan 19 #Python
Python编程中time模块的一些关键用法解析
Jan 19 #Python
Python编程中的文件读写及相关的文件对象方法讲解
Jan 19 #Python
You might like
php设计模式之观察者模式的应用详解
2013/05/21 PHP
PHP各种异常和错误的拦截方法及发生致命错误时进行报警
2016/01/19 PHP
实现连缀调用的map方法(prototype)
2009/08/05 Javascript
jquery 模拟雅虎首页的点击对话框效果
2010/04/11 Javascript
javascript与cookie 的问题详解
2013/11/11 Javascript
浅析JavaScript中的隐式类型转换
2013/12/05 Javascript
javascript向后台传送相同属性的参数即数组参数
2014/02/17 Javascript
按Enter键触发事件的jquery方法实现代码
2014/02/17 Javascript
jQuery+PHP打造滑动开关效果
2014/12/16 Javascript
Node.js 制作实时多人游戏框架
2015/01/08 Javascript
js实现鼠标感应图片展示的方法
2015/02/27 Javascript
javascript制作游戏开发碰撞检测的封装代码
2015/03/31 Javascript
jquery插件splitScren实现页面分屏切换模板特效
2015/06/16 Javascript
jQuery仅用3行代码实现的显示与隐藏功能完整实例
2015/10/08 Javascript
Javascript获取图片原始宽度和高度的方法详解
2016/09/20 Javascript
浅谈jQuery框架Ajax常用选项
2017/07/08 jQuery
JavaScript实现简单评论功能
2017/08/17 Javascript
vue+iview+less+echarts实战项目总结
2018/02/22 Javascript
vue中使用element-ui进行表单验证的实例代码
2018/06/22 Javascript
React key值的作用和使用详解
2018/08/23 Javascript
vue从零实现一个消息通知组件的方法详解
2020/03/16 Javascript
JavaScript 如何计算文本的行数的实现
2020/09/14 Javascript
github配置使用指南
2014/11/18 Python
PyQt5每天必学之滑块控件QSlider
2018/04/20 Python
Python 使用生成器代替线程的方法
2020/08/04 Python
如何利用python之wxpy模块玩转微信
2020/08/17 Python
做一个能自适应高度的textarea的示例代码
2019/09/06 HTML / CSS
某/etc/fstab文件中的某行如下: /dev/had5 /mnt/dosdata msdos defaults,usrquota 1 2 请解释其含义
2013/04/11 面试题
幼儿园儿童节主持词
2014/03/21 职场文书
《大自然的语言》教学反思
2014/04/08 职场文书
经贸专业毕业生求职信范文
2014/05/01 职场文书
担保书格式
2015/01/20 职场文书
原告代理词范文
2015/05/25 职场文书
未来,这5大方向都很适合创业
2019/07/22 职场文书
python编写函数注意事项总结
2021/03/29 Python
深入浅析python3 依赖倒置原则(示例代码)
2021/07/09 Python