六个窍门助你提高Python运行效率


Posted in Python onJune 09, 2015

不喜欢Python的人经常会吐嘈Python运行太慢。但是,事实并非如此。尝试以下六个窍门,来为你的Python应用提速。

窍门一:关键代码使用外部功能包

Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意。使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率。这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包。简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率。以下是一些你可以选择用来提升效率的功能包:

Cython
Pylnlne
PyPy
Pyrex

这些功能包的用处各有不同。比如说,使用C语言的数据类型,可以使涉及内存操作的任务更高效或者更直观。Pyrex就能帮助Python延展出这样的功能。Pylnline能使你在Python应用中直接使用C代码。内联代码是独立编译的,但是它把所有编译文件都保存在某处,并能充分利用C语言提供的高效率。

窍门二:在排序时使用键

Python含有许多古老的排序规则,这些规则在你创建定制的排序方法时会占用很多时间,而这些排序方法运行时也会拖延程序实际的运行速度。最佳的排序方法其实是尽可能多地使用键和内置的sort()方法。譬如,拿下面的代码来说:

    import operator

    somelist = [(1, 5, 8), (6, 2, 4), (9, 7, 5)]

    somelist.sort(key=operator.itemgetter(0))

    somelist

    #Output = [(1, 5, 8), (6, 2, 4), (9, 7, 5)]

    somelist.sort(key=operator.itemgetter(1))

    somelist

    #Output = [(6, 2, 4), (1, 5, 8), (9, 7, 5)]

    somelist.sort(key=operator.itemgetter(2))

    somelist

    #Output = [(6, 2, 4), (9, 7, 5), (1, 5, 8)],

在每段例子里,list都是根据你选择的用作关键参数的索引进行排序的。这个方法不仅对数值类型有效,还同样适用于字符串类型。

窍门三:针对循环的优化

每一种编程语言都强调最优化的循环方案。当使用Python时,你可以借助丰富的技巧让循环程序跑得更快。然而,开发者们经常遗忘的一个技巧是:尽量避免在循环中访问变量的属性。譬如,拿下面的代码来说:

    lowerlist = ['this', 'is', 'lowercase']

    upper = str.upper

    upperlist = []

    append = upperlist.append

    for word in lowerlist:

        append(upper(word))

        print(upperlist)

        #Output = ['THIS', 'IS', 'LOWERCASE']

每次你调用str.upper, Python都会计算这个式子的值。然而,如果你把这个求值赋值给一个变量,那么求值的结果就能提前知道,Python程序就能运行得更快。因此,关键就是尽可能减小Python在循环中的工作量。因为Python解释执行的特性,在上面的例子中会大大减慢它的速度。

(注意:优化循环的方法还有很多,这只是其中之一。比如,很多程序员会认为,列表推导式是提高循环速度的最佳方法。关键在于,优化循环方案是提高应用程序运行速度的上佳选择。)

窍门四:使用较新的Python版本

如果你在网上搜索Python,你会发现数不尽的信息都是关于如何升级Python版本。通常,每个版本的Python都会包含优化内容,使其运行速度优于之前的版本。但是,限制因素在于,你最喜欢的函数库有没有同步更新支持新的Python版本。与其争论函数库是否应该更新,关键在于新的Python版本是否足够高效来支持这一更新。

你要保证自己的代码在新版本里还能运行。你需要使用新的函数库才能体验新的Python版本,然后你需要在做出关键性的改动时检查自己的应用。只有当你完成必要的修正之后,你才能体会新版本的不同。

然而,如果你只是确保自己的应用在新版本中可以运行,你很可能会错过新版本提供的新特性。一旦你决定更新,请分析你的应用在新版本下的表现,并检查可能出问题的部分,然后优先针对这些部分应用新版本的特性。只有这样,用户才能在更新之初就觉察到应用性能的改观。

窍门五:尝试多种编码方法

每次创建应用时都使用同一种编码方法几乎无一例外会导致应用的运行效率不尽人意。可以在程序分析时尝试一些试验性的办法。譬如说,在处理字典中的数据项时,你既可以使用安全的方法,先确保数据项已经存在再进行更新,也可以直接对数据项进行更新,把不存在的数据项作为特例分开处理。请看下面第一段代码:

   n = 16

    myDict = {}

    for i in range(0, n):

        char = 'abcd'[i%4]

        if char not in myDict:

            myDict[char] = 0

            myDict[char] += 1

            print(myDict)

当一开始myDict为空时,这段代码会跑得比较快。然而,通常情况下,myDict填满了数据,至少填有大部分数据,这时换另一种方法会更有效率。

    n = 16

    myDict = {}

    for i in range(0, n):

        char = 'abcd'[i%4]

        try:

            myDict[char] += 1

        except KeyError:

            myDict[char] = 1

        print(myDict)

在两种方法中输出结果都是一样的。区别在于输出是如何获得的。跳出常规的思维模式,创建新的编程技巧能使你的应用更有效率。

窍门六:交叉编译你的应用

开发者有时会忘记计算机其实并不理解用来创建现代应用程序的编程语言。计算机理解的是机器语言。为了运行你的应用,你借助一个应用将你所编的人类可读的代码转换成机器可读的代码。有时,你用一种诸如Python这样的语言编写应用,再以C++这样的语言运行你的应用,这在运行的角度来说,是可行的。关键在于,你想你的应用完成什么事情,而你的主机系统能提供什么样的资源。

Nuitka是一款有趣的交叉编译器,能将你的Python代码转化成C++代码。这样,你就可以在native模式下执行自己的应用,而无需依赖于解释器程序。你会发现自己的应用运行效率有了较大的提高,但是这会因平台和任务的差异而有所不同。

(注意:Nuitka现在还处在测试阶段,所以在实际应用中请多加注意。实际上,当下最好还是把它用于实验。此外,关于交叉编译是否为提高运行效率的最佳方法还存在讨论的空间。开发者已经使用交叉编译多年,用来提高应用的速度。记住,每一种解决办法都有利有弊,在把它用于生产环境之前请仔细权衡。)

在使用交叉编译器时,记得确保它支持你所用的Python版本。Nuitka支持Python2.6, 2.7, 3.2和3.3。为了让解决方案生效,你需要一个Python解释器和一个C++编译器。Nuitka支持许多C++编译器,其中包括Microsoft Visual Studio, MinGW 和 Clang/LLVM。

交叉编译可能造成一些严重问题。比如,在使用Nuitka时,你会发现即便是一个小程序也会消耗巨大的驱动空间。因为Nuitka借助一系列的动态链接库(DDLs)来执行Python的功能。因此,如果你用的是一个资源很有限的系统,这种方法或许不太可行。

结论

前文所述的六个窍门都能帮助你创建运行更有效率的Python应用。但是银弹是不存在的。上述的这些窍门不一定每次都能奏效。在特定的Python的版本下,有的窍门或许比其他的表现更好,但这有时候甚至取决于平台的差异。你需要总结分析你的应用,找到它效率低下的部分,然后尝试这些窍门,找到解决问题的最佳方法。

Python 相关文章推荐
Python简单日志处理类分享
Feb 14 Python
Python使用Flask框架获取当前查询参数的方法
Mar 21 Python
python中reduce()函数的使用方法示例
Sep 29 Python
Django在win10下的安装并创建工程
Nov 20 Python
利用Anaconda简单安装scrapy框架的方法
Jun 13 Python
dataframe 按条件替换某一列中的值方法
Jan 29 Python
python操作openpyxl导出Excel 设置单元格格式及合并处理代码实例
Aug 27 Python
Pytoch之torchvision.transforms图像变换实例
Dec 30 Python
15行Python代码实现免费发送手机短信推送消息功能
Feb 27 Python
Python3读取和写入excel表格数据的示例代码
Jun 09 Python
python实现三阶魔方还原的示例代码
Apr 28 Python
python playwrigh框架入门安装使用
Jul 23 Python
python数组复制拷贝的实现方法
Jun 09 #Python
Python函数返回值实例分析
Jun 08 #Python
python下MySQLdb用法实例分析
Jun 08 #Python
Python赋值语句后逗号的作用分析
Jun 08 #Python
Python中逗号的三种作用实例分析
Jun 08 #Python
Python文件右键找不到IDLE打开项解决办法
Jun 08 #Python
Python判断字符串与大小写转换
Jun 08 #Python
You might like
使用PHP的日期与时间函数技巧
2008/04/24 PHP
PHP加密解密实例分析
2015/12/25 PHP
深入理解PHP原理之执行周期分析
2016/06/01 PHP
Laravel 中使用简单的方法跟踪用户是否在线(推荐)
2019/10/30 PHP
仅IE9/10同时支持script元素的onload和onreadystatechange事件分析
2011/04/27 Javascript
jQuery div层的放大与缩小简单实现代码
2013/03/28 Javascript
20行代码实现的一个CSS覆盖率测试脚本
2013/07/07 Javascript
超级简单的jquery操作表格方法
2014/12/15 Javascript
JavaScript中的数组操作介绍
2014/12/30 Javascript
Javascript的比较汇总
2016/07/25 Javascript
浅谈js中子页面父页面方法 变量相互调用
2016/08/04 Javascript
微信页面倒计时代码(解决safari不兼容date的问题)
2016/12/13 Javascript
JS树形菜单组件Bootstrap TreeView使用方法详解
2016/12/21 Javascript
jQuery插件HighCharts绘制的2D堆柱状图效果示例【附demo源码下载】
2017/03/14 Javascript
在vue中通过axios异步使用echarts的方法
2018/01/13 Javascript
webpack配置导致字体图标无法显示的解决方法
2018/03/06 Javascript
nodejs用gulp管理前端文件方法
2018/06/24 NodeJs
老生常谈JavaScript获取CSS样式的方法(兼容各浏览器)
2018/09/19 Javascript
详解webpack+ES6+Sass搭建多页面应用
2018/11/05 Javascript
JavaScript数据结构之栈实例用法
2019/01/18 Javascript
JS加载解析Markdown文档过程详解
2020/05/19 Javascript
vue实现登录拦截
2020/06/29 Javascript
JavaScript canvas实现文字时钟
2021/01/10 Javascript
巧用Python装饰器 免去调用父类构造函数的麻烦
2012/05/18 Python
Django中使用celery完成异步任务的示例代码
2018/01/23 Python
python如何为创建大量实例节省内存
2018/03/20 Python
Python scipy的二维图像卷积运算与图像模糊处理操作示例
2019/09/06 Python
基于python3监控服务器状态进行邮件报警
2019/10/19 Python
Opencv图像处理:如何判断图片里某个颜色值占的比例
2020/06/03 Python
HTML5 解决苹果手机不能自动播放音乐问题
2017/12/27 HTML / CSS
澳大利亚女性快速时尚零售商:Ally Fashion
2018/04/25 全球购物
JSF面试题:如何管量web层中的Bean,用什么标签。如何通过jsp页面与Bean绑定在一起进行处理?
2012/10/05 面试题
超市实习总结自我鉴定
2013/09/19 职场文书
员工培训邀请函
2014/01/11 职场文书
工作态度不端正检讨书
2014/10/04 职场文书
微前端qiankun改造日渐庞大的项目教程
2022/06/21 Javascript