Pytorch中的数据集划分&正则化方法


Posted in Python onMay 27, 2021

1.训练集&验证集&测试集

训练集:训练数据

验证集:验证不同算法(比如利用网格搜索对超参数进行调整等),检验哪种更有效

测试集:正确评估分类器的性能

正常流程:验证集会记录每个时间戳的参数,在加载test数据前会加载那个最好的参数,再来评估。比方说训练完6000个epoch后,发现在第3520个epoch的validation表现最好,测试时会加载第3520个epoch的参数。

import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms
#超参数
batch_size=200
learning_rate=0.01
epochs=10
#获取训练数据
train_db = datasets.MNIST('../data', train=True, download=True,   #train=True则得到的是训练集
                   transform=transforms.Compose([                 #transform进行数据预处理
                       transforms.ToTensor(),                     #转成Tensor类型的数据
                       transforms.Normalize((0.1307,), (0.3081,)) #进行数据标准化(减去均值除以方差)
                   ]))
#DataLoader把训练数据分成多个小组,此函数每次抛出一组数据。直至把所有的数据都抛出。就是做一个数据的初始化
train_loader = torch.utils.data.DataLoader(train_db, batch_size=batch_size, shuffle=True)
#获取测试数据
test_db = datasets.MNIST('../data', train=False,
                   transform=transforms.Compose([
                        transforms.ToTensor(),
                        transforms.Normalize((0.1307,), (0.3081,))
                   ]))
test_loader = torch.utils.data.DataLoader(test_db, batch_size=batch_size, shuffle=True)
#将训练集拆分成训练集和验证集
print('train:', len(train_db), 'test:', len(test_db))                              #train: 60000 test: 10000
train_db, val_db = torch.utils.data.random_split(train_db, [50000, 10000])
print('db1:', len(train_db), 'db2:', len(val_db))                                  #db1: 50000 db2: 10000
train_loader = torch.utils.data.DataLoader(train_db, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_db, batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.model = nn.Sequential(         #定义网络的每一层,
            nn.Linear(784, 200),
            nn.ReLU(inplace=True),
            nn.Linear(200, 200),
            nn.ReLU(inplace=True),
            nn.Linear(200, 10),
            nn.ReLU(inplace=True),
        )
    def forward(self, x):
        x = self.model(x)
        return x
net = MLP()
#定义sgd优化器,指明优化参数、学习率,net.parameters()得到这个类所定义的网络的参数[[w1,b1,w2,b2,...]
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss()
for epoch in range(epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)          #将二维的图片数据摊平[样本数,784]
        logits = net(data)                   #前向传播
        loss = criteon(logits, target)       #nn.CrossEntropyLoss()自带Softmax
        optimizer.zero_grad()                #梯度信息清空
        loss.backward()                      #反向传播获取梯度
        optimizer.step()                     #优化器更新
        if batch_idx % 100 == 0:             #每100个batch输出一次信息
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
    #验证集用来检测训练是否过拟合
    val_loss = 0
    correct = 0
    for data, target in val_loader:
        data = data.view(-1, 28 * 28)
        logits = net(data)
        val_loss += criteon(logits, target).item()
        pred = logits.data.max(dim=1)[1]
        correct += pred.eq(target.data).sum()
    val_loss /= len(val_loader.dataset)
    print('\nVAL set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        val_loss, correct, len(val_loader.dataset),
        100. * correct / len(val_loader.dataset)))
#测试集用来评估
test_loss = 0
correct = 0                                         #correct记录正确分类的样本数
for data, target in test_loader:
    data = data.view(-1, 28 * 28)
    logits = net(data)
    test_loss += criteon(logits, target).item()     #其实就是criteon(logits, target)的值,标量
    pred = logits.data.max(dim=1)[1]                #也可以写成pred=logits.argmax(dim=1)
    correct += pred.eq(target.data).sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)))

2.正则化

正则化可以解决过拟合问题。

2.1L2范数(更常用)

在定义优化器的时候设定weigth_decay,即L2范数前面的λ参数。

optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, weight_decay=0.01)

2.2L1范数

Pytorch没有直接可以调用的方法,实现如下:

Pytorch中的数据集划分&正则化方法

3.动量(Momentum)

Adam优化器内置了momentum,SGD需要手动设置。

optimizer = torch.optim.SGD(model.parameters(), args=lr, momentum=args.momentum, weight_decay=args.weight_decay)

4.学习率衰减

torch.optim.lr_scheduler 中提供了基于多种epoch数目调整学习率的方法。

4.1torch.optim.lr_scheduler.ReduceLROnPlateau:基于测量指标对学习率进行动态的下降

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

训练过程中,optimizer会把learning rate 交给scheduler管理,当指标(比如loss)连续patience次数还没有改进时,需要降低学习率,factor为每次下降的比例。

scheduler.step(loss_val)每调用一次就会监听一次loss_val。

Pytorch中的数据集划分&正则化方法

4.2torch.optim.lr_scheduler.StepLR:基于epoch

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

当epoch每过stop_size时,学习率都变为初始学习率的gamma倍。

Pytorch中的数据集划分&正则化方法

5.提前停止(防止overfitting)

基于经验值。

6.Dropout随机失活

遍历每一层,设置消除神经网络中的节点概率,得到精简后的一个样本。

torch.nn.Dropout(p=dropout_prob)

p表示的示的是删除节点数的比例(Tip:tensorflow中keep_prob表示保留节点数的比例,不要混淆)

Pytorch中的数据集划分&正则化方法

测试阶段无需使用dropout,所以在train之前执行net_dropped.train()相当于启用dropout,测试之前执行net_dropped.eval()相当于不启用dropout。

Pytorch中的数据集划分&正则化方法

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python监控linux内存并写入mongodb(推荐)
Sep 11 Python
利用Python找出序列中出现最多的元素示例代码
Dec 08 Python
PyCharm 常用快捷键和设置方法
Dec 20 Python
Win7下Python与Tensorflow-CPU版开发环境的安装与配置过程
Jan 04 Python
Django开发中的日志输出的方法
Jul 02 Python
pycharm安装和首次使用教程
Aug 27 Python
Python把对应格式的csv文件转换成字典类型存储脚本的方法
Feb 12 Python
pycharm中显示CSS提示的知识点总结
Jul 29 Python
Python利用WMI实现ping命令的例子
Aug 14 Python
Django haystack实现全文搜索代码示例
Nov 28 Python
python 实现数据库中数据添加、查询与更新的示例代码
Dec 07 Python
python playwrigh框架入门安装使用
Jul 23 Python
Pytorch 如何实现常用正则化
PyTorch 实现L2正则化以及Dropout的操作
Python开发之QT解决无边框界面拖动卡屏问题(附带源码)
pytorch 实现在测试的时候启用dropout
使用Python脚本对GiteePages进行一键部署的使用说明
教你使用Python pypinyin库实现汉字转拼音
基于tensorflow权重文件的解读
May 26 #Python
You might like
php对mongodb的扩展(初出茅庐)
2012/11/11 PHP
解析php session_set_save_handler 函数的用法(mysql)
2013/06/29 PHP
解析php防止form重复提交的方法
2013/07/01 PHP
php读取csv实现csv文件下载功能
2013/12/18 PHP
php实现遍历多维数组的方法
2015/11/25 PHP
Laravel 5.3 学习笔记之 配置
2016/08/28 PHP
php微信开发之百度天气预报
2016/11/18 PHP
php命令行写shell实例详解
2018/07/19 PHP
javascript 触发HTML元素绑定的函数
2010/09/11 Javascript
jquery.ajax的url中传递中文乱码问题的解决方法
2014/02/07 Javascript
jQuery制作的别致导航有阴影背景高亮模式窗口
2014/04/15 Javascript
Javascript中prototype属性实现给内置对象添加新的方法
2015/05/14 Javascript
详解javascript跨浏览器事件处理程序
2016/03/27 Javascript
node.js中使用Export和Import的方法
2017/09/18 Javascript
手动下载Chrome并解决puppeteer无法使用问题
2018/11/12 Javascript
js canvas实现5张图片合成一张图片
2019/07/15 Javascript
[01:01:22]VGJ.S vs OG 2018国际邀请赛淘汰赛BO3 第一场 8.22
2018/08/23 DOTA
[01:29:17]RNG vs Liquid 2019国际邀请赛淘汰赛 败者组 BO3 第二场 8.23
2019/09/05 DOTA
python列表去重的二种方法
2014/02/14 Python
详解Python的Django框架中Manager方法的使用
2015/07/21 Python
python3音乐播放器简单实现代码
2020/04/20 Python
python爬虫爬取淘宝商品信息(selenum+phontomjs)
2018/02/24 Python
python使用PIL模块获取图片像素点的方法
2019/01/08 Python
python实现图片转字符小工具
2019/04/30 Python
简单了解Python3里的一些新特性
2019/07/13 Python
python在一个范围内取随机数的简单实例
2020/08/16 Python
美国最大的网络男装服装品牌:Bonobos
2017/05/25 全球购物
旅游业大学生创业计划书
2014/01/31 职场文书
公立医院改革实施方案
2014/03/14 职场文书
市场营销专业求职信
2014/06/17 职场文书
建筑专业毕业生求职信
2014/09/30 职场文书
党的群众路线教育实践活动个人整改措施
2014/10/27 职场文书
无罪辩护词范文
2015/05/21 职场文书
毕业生的自我鉴定表范文
2019/05/16 职场文书
详细介绍python类及类的用法
2021/05/31 Python
react使用antd的上传组件实现文件表单一起提交功能(完整代码)
2021/06/29 Javascript