python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析


Posted in Python onApril 14, 2021

一、环境准备

  • python3.8.3
  • pycharm
  • 项目所需第三方包
pip install scrapy fake-useragent requests selenium virtualenv -i https://pypi.douban.com/simple

1.1 创建虚拟环境

切换到指定目录创建

virtualenv .venv

创建完记得激活虚拟环境

1.2 创建项目

scrapy startproject 项目名称

1.3 使用pycharm打开项目,将创建的虚拟环境配置到项目中来
1.4 创建京东spider

scrapy genspider 爬虫名称 url

1.5 修改允许访问的域名,删除https:

二、问题分析

爬取数据的思路是先获取首页的基本信息,在获取详情页商品详细信息;爬取京东数据时,只返回40条数据,这里,作者使用selenium,在scrapy框架中编写下载器中间件,返回页面所有数据。
爬取的字段分别是:

商品价格

商品评数

商品店家

商品SKU(京东可直接搜索到对应的产品)

商品标题

商品详细信息

三、spider

import re
import scrapy


from lianjia.items import jd_detailItem


class JiComputerDetailSpider(scrapy.Spider):
    name = 'ji_computer_detail'
    allowed_domains = ['search.jd.com', 'item.jd.com']
    start_urls = [
        'https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page=1&s=1&click=0']

    def parse(self, response):
        lls = response.xpath('//ul[@class="gl-warp clearfix"]/li')
        for ll in lls:
            item = jd_detailItem()
            computer_price = ll.xpath('.//div[@class="p-price"]/strong/i/text()').extract_first()
            computer_commit = ll.xpath('.//div[@class="p-commit"]/strong/a/text()').extract_first()
            computer_p_shop = ll.xpath('.//div[@class="p-shop"]/span/a/text()').extract_first()
            item['computer_price'] = computer_price
            item['computer_commit'] = computer_commit
            item['computer_p_shop'] = computer_p_shop
            meta = {
                'item': item
            }
            shop_detail_url = ll.xpath('.//div[@class="p-img"]/a/@href').extract_first()
            shop_detail_url = 'https:' + shop_detail_url
            yield scrapy.Request(url=shop_detail_url, callback=self.detail_parse, meta=meta)
        for i in range(2, 200, 2):
            next_page_url = f'https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page={i}&s=116&click=0'
            yield scrapy.Request(url=next_page_url, callback=self.parse)

    def detail_parse(self, response):
        item = response.meta.get('item')
        computer_sku = response.xpath('//a[@class="notice J-notify-sale"]/@data-sku').extract_first()
        item['computer_sku'] = computer_sku
        computer_title = response.xpath('//div[@class="sku-name"]/text()').extract_first().strip()
        computer_title = ''.join(re.findall('\S', computer_title))
        item['computer_title'] = computer_title
        computer_detail = response.xpath('string(//ul[@class="parameter2 p-parameter-list"])').extract_first().strip()
        computer_detail = ''.join(re.findall('\S', computer_detail))
        item['computer_detail'] = computer_detail
        yield item

四、item

class jd_detailItem(scrapy.Item):
    # define the fields for your item here like:
    computer_sku = scrapy.Field()
    computer_price = scrapy.Field()
    computer_title = scrapy.Field()
    computer_commit = scrapy.Field()
    computer_p_shop = scrapy.Field()
    computer_detail = scrapy.Field()

五、setting

import random


from fake_useragent import UserAgent
ua = UserAgent()
USER_AGENT = ua.random
ROBOTSTXT_OBEY = False
DOWNLOAD_DELAY = random.uniform(0.5, 1)
DOWNLOADER_MIDDLEWARES = {
    'lianjia.middlewares.jdDownloaderMiddleware': 543
}
ITEM_PIPELINES = {
    'lianjia.pipelines.jd_csv_Pipeline': 300
}

六、pipelines

class jd_csv_Pipeline:
    # def process_item(self, item, spider):
    #     return item
    def open_spider(self, spider):
        self.fp = open('./jd_computer_message.xlsx', mode='w+', encoding='utf-8')
        self.fp.write('computer_sku\tcomputer_title\tcomputer_p_shop\tcomputer_price\tcomputer_commit\tcomputer_detail\n')

    def process_item(self, item, spider):
        # 写入文件
        try:
            line = '\t'.join(list(item.values())) + '\n'
            self.fp.write(line)
            return item
        except:
            pass

    def close_spider(self, spider):
        # 关闭文件
        self.fp.close()

七、middlewares

class jdDownloaderMiddleware:
    def process_request(self, request, spider):
        # 判断是否是ji_computer_detail的爬虫
        # 判断是否是首页
        if spider.name == 'ji_computer_detail' and re.findall(f'.*(item.jd.com).*', request.url) == []:
            options = ChromeOptions()
            options.add_argument("--headless")
            driver = webdriver.Chrome(options=options)
            driver.get(request.url)
            for i in range(0, 15000, 5000):
                driver.execute_script(f'window.scrollTo(0, {i})')
                time.sleep(0.5)
            body = driver.page_source.encode()
            time.sleep(1)
            return HtmlResponse(url=request.url, body=body, request=request)
        return None

八、使用jupyter进行简单的处理和分析

其他文件:百度停用词库、简体字文件
下载第三方包

!pip install seaborn jieba wordcloud PIL  -i https://pypi.douban.com/simple

8.1导入第三方包

import re
import os
import jieba
import wordcloud
import pandas as pd
import numpy as np
from PIL import Image
import seaborn as sns
from docx import Document
from docx.shared import Inches
import matplotlib.pyplot as plt
from pandas import DataFrame,Series

8.2设置可视化的默认字体和seaborn的样式

sns.set_style('darkgrid')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

8.3读取数据

df_jp = pd.read_excel('./jd_shop.xlsx')

8.4筛选Inteli5、i7、i9处理器数据

def convert_one(s):
    if re.findall(f'.*?(i5).*', str(s)) != []:
        return re.findall(f'.*?(i5).*', str(s))[0]
    elif re.findall(f'.*?(i7).*', str(s)) != []:
        return re.findall(f'.*?(i7).*', str(s))[0]
    elif re.findall(f'.*?(i9).*', str(s)) != []:
        return re.findall(f'.*?(i9).*', str(s))[0]
df_jp['computer_intel'] = df_jp['computer_detail'].map(convert_one)

8.5筛选笔记本电脑的屏幕尺寸范围

def convert_two(s):
    if re.findall(f'.*?(\d+\.\d+英寸-\d+\.\d+英寸).*', str(s)) != []:
        return re.findall(f'.*?(\d+\.\d+英寸-\d+\.\d+英寸).*', str(s))[0]
df_jp['computer_in'] = df_jp['computer_detail'].map(convert_two)

8.6将评论数转化为整形

def convert_three(s):
    if re.findall(f'(\d+)万+', str(s)) != []:
        number = int(re.findall(f'(\d+)万+', str(s))[0]) * 10000
        return number
    elif re.findall(f'(\d+)+', str(s)) != []:
        number = re.findall(f'(\d+)+', str(s))[0]
        return number
df_jp['computer_commit'] = df_jp['computer_commit'].map(convert_three)

8.7筛选出需要分析的品牌

def find_computer(name, s):
    sr = re.findall(f'.*({name}).*', str(s))[0]
    return sr
def convert(s):
    if re.findall(f'.*(联想).*', str(s)) != []:
        return find_computer('联想', s)
    elif re.findall(f'.*(惠普).*', str(s)) != []:
        return find_computer('惠普', s)
    elif re.findall(f'.*(华为).*', str(s)) != []:
        return find_computer('华为', s)
    elif re.findall(f'.*(戴尔).*', str(s)) != []:
        return find_computer('戴尔', s)
    elif re.findall(f'.*(华硕).*', str(s)) != []:
        return find_computer('华硕', s)
    elif re.findall(f'.*(小米).*', str(s)) != []:
        return find_computer('小米', s)
    elif re.findall(f'.*(荣耀).*', str(s)) != []:
        return find_computer('荣耀', s)
    elif re.findall(f'.*(神舟).*', str(s)) != []:
        return find_computer('神舟', s)
    elif re.findall(f'.*(外星人).*', str(s)) != []:
        return find_computer('外星人', s)
df_jp['computer_p_shop'] = df_jp['computer_p_shop'].map(convert)

8.8删除指定字段为空值的数据

for n in ['computer_price', 'computer_commit', 'computer_p_shop', 'computer_sku', 'computer_detail', 'computer_intel', 'computer_in']:
    index_ls = df_jp[df_jp[[n]].isnull().any(axis=1)==True].index
    df_jp.drop(index=index_ls, inplace=True)

8.9查看各品牌的平均价格

plt.figure(figsize=(10, 8), dpi=100)
ax = sns.barplot(x='computer_p_shop', y='computer_price', data=df_jp.groupby(by='computer_p_shop')[['computer_price']].mean().reset_index())
for index,row in df_jp.groupby(by='computer_p_shop')[['computer_price']].mean().reset_index().iterrows():
    ax.text(row.name,row['computer_price'] + 2,round(row['computer_price'],2),color="black",ha="center")
ax.set_xlabel('品牌')
ax.set_ylabel('平均价格')
ax.set_title('各品牌平均价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('各品牌平均价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.10 查看各品牌的价格区间

plt.figure(figsize=(10, 8), dpi=100)
ax = sns.boxenplot(x='computer_p_shop', y='computer_price', data=df_jp.query('computer_price>500'))
ax.set_xlabel('品牌')
ax.set_ylabel('价格区间')
ax.set_title('各品牌价格区间')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('各品牌价格区间.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.11 查看价格与评论数的关系

df_jp['computer_commit'] = df_jp['computer_commit'].astype('int64')
ax = sns.jointplot(x="computer_commit", y="computer_price", data=df_jp, kind="reg", truncate=False,color="m", height=10)
ax.fig.savefig('评论数与价格的关系.png')

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.12 查看商品标题里出现的关键词

import imageio

# 将特征转换为列表
ls = df_jp['computer_title'].to_list()
# 替换非中英文的字符
feature_points = [re.sub(r'[^a-zA-Z\u4E00-\u9FA5]+',' ',str(feature)) for feature in ls]
# 读取停用词
stop_world = list(pd.read_csv('./百度停用词表.txt', engine='python', encoding='utf-8', names=['stopwords'])['stopwords'])
feature_points2 = []
for feature in feature_points:  # 遍历每一条评论
    words = jieba.lcut(feature) # 精确模式,没有冗余.对每一条评论进行jieba分词
    ind1 = np.array([len(word) > 1 for word in words])  # 判断每个分词的长度是否大于1
    ser1 = pd.Series(words)
    ser2 = ser1[ind1] # 筛选分词长度大于1的分词留下
    ind2 = ~ser2.isin(stop_world)  # 注意取反负号
    ser3 = ser2[ind2].unique()  # 筛选出不在停用词表的分词留下,并去重
    if len(ser3) > 0:
        feature_points2.append(list(ser3))
# 将所有分词存储到一个列表中
wordlist = [word for feature in feature_points2 for word in feature]
# 将列表中所有的分词拼接成一个字符串
feature_str =  ' '.join(wordlist)   
# 标题分析
font_path = r'./simhei.ttf'
shoes_box_jpg = imageio.imread('./home.jpg')
wc=wordcloud.WordCloud(
    background_color='black',
    mask=shoes_box_jpg,
    font_path = font_path,
    min_font_size=5,
    max_font_size=50,
    width=260,
    height=260,
)
wc.generate(feature_str)
plt.figure(figsize=(10, 8), dpi=100)
plt.imshow(wc)
plt.axis('off')
plt.savefig('标题提取关键词')

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.13 筛选价格在4000到5000,联想品牌、处理器是i5、屏幕大小在15寸以上的数据并查看价格

df_jd_query = df_jp.loc[(df_jp['computer_price'] <=5000) & (df_jp['computer_price']>=4000) & (df_jp['computer_p_shop']=="联想") & (df_jp['computer_intel']=="i5") & (df_jp['computer_in']=="15.0英寸-15.9英寸"), :].copy()
plt.figure(figsize=(20, 10), dpi=100)
ax = sns.barplot(x='computer_sku', y='computer_price', data=df_jd_query)
ax.set_xlabel('联想品牌SKU')
ax.set_ylabel('价格')
ax.set_title('酷睿i5处理器屏幕15寸以上各SKU的价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('酷睿i5处理器屏幕15寸以上各SKU的价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.14 筛选价格在4000到5000,戴尔品牌、处理器是i7、屏幕大小在15寸以上的数据并查看价格

df_jp_daier = df_jp.loc[(df_jp['computer_price'] <=5000) & (df_jp['computer_price']>=4000) & (df_jp['computer_p_shop']=="戴尔") & (df_jp['computer_intel']=="i7") & (df_jp['computer_in']=="15.0英寸-15.9英寸"), :].copy()
plt.figure(figsize=(10, 8), dpi=100)
ax = sns.barplot(x='computer_sku', y='computer_price', data=df_jp_daier)
ax.set_xlabel('戴尔品牌SKU')
ax.set_ylabel('价格')
ax.set_title('酷睿i7处理器屏幕15寸以上各SKU的价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('酷睿i7处理器屏幕15寸以上各SKU的价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.15 不同Intel处理器品牌的价格

plt.figure(figsize=(10, 8), dpi=100)
ax = sns.barplot(x='computer_p_shop', y='computer_price', data=df_jp, hue='computer_intel')
ax.set_xlabel('品牌')
ax.set_ylabel('价格')
ax.set_title('不同酷睿处理器品牌的价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('不同酷睿处理器品牌的价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.16 不同尺寸品牌的价格

plt.figure(figsize=(10, 8), dpi=100)
ax = sns.barplot(x='computer_p_shop', y='computer_price', data=df_jp, hue='computer_in')
ax.set_xlabel('品牌')
ax.set_ylabel('价格')
ax.set_title('不同尺寸品牌的价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('不同尺寸品牌的价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

以上就是python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析的详细内容,更多关于python 爬取京东数据的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python中pygame模块用法实例
Oct 09 Python
Python每天必学之bytes字节
Jan 28 Python
Python编码爬坑指南(必看)
Jun 10 Python
python利用小波分析进行特征提取的实例
Jan 09 Python
详解用Python练习画个美队盾牌
Mar 23 Python
使用python获取(宜宾市地震信息)地震信息
Jun 20 Python
Django获取应用下的所有models的例子
Aug 30 Python
如何基于python操作excel并获取内容
Dec 24 Python
python百行代码自制电脑端网速悬浮窗的实现
May 12 Python
python小白切忌乱用表达式
May 29 Python
Node.js 和 Python之间该选择哪个?
Aug 05 Python
Python 详解通过Scrapy框架实现爬取百度新冠疫情数据流程
Nov 11 Python
深度学习小工程练习之垃圾分类详解
python3美化表格数据输出结果的实现代码
Apr 14 #Python
Python生成九宫格图片的示例代码
用Python写一个简易版弹球游戏
python urllib库的使用详解
Apr 13 #Python
用Python将库打包发布到pypi
python xlwt模块的使用解析
You might like
php自动获取目录下的模板的代码
2010/08/08 PHP
php数组函数序列之array_combine() - 数组合并函数使用说明
2011/10/29 PHP
PHP可逆加密/解密函数分享
2012/09/25 PHP
PHP设计模式之代理模式的深入解析
2013/06/13 PHP
PHP小技巧之JS和CSS优化工具Minify的使用方法
2014/05/19 PHP
PHP实现微信发红包程序
2015/08/24 PHP
php中preg_replace_callback函数简单用法示例
2016/07/21 PHP
PHP的mysqli_thread_id()函数讲解
2019/01/24 PHP
php使用fullcalendar日历插件详解
2019/03/06 PHP
js控制的回到页面顶端goTop的代码实现
2013/03/20 Javascript
js数值和和字符串进行转换时可以对不同进制进行操作
2014/03/05 Javascript
JS上传图片前实现图片预览效果的方法
2015/03/02 Javascript
JavaScript实现上下浮动的窗口效果代码
2015/10/12 Javascript
超实用的JavaScript代码段 附使用方法
2016/05/22 Javascript
Jquery与Bootstrap实现后台管理页面增删改查功能示例
2017/01/22 Javascript
Vue实现带进度条的文件拖动上传功能
2018/02/23 Javascript
vue中使用cropperjs的方法
2018/03/01 Javascript
js canvas画布实现高斯模糊效果
2018/11/27 Javascript
微信小程序如何使用canvas二维码保存至手机相册
2019/07/15 Javascript
如何基于JavaScript判断图片是否加载完成
2019/12/28 Javascript
详解JavaScript的this指向和绑定
2020/09/08 Javascript
Python中动态获取对象的属性和方法的教程
2015/04/09 Python
Python聊天室程序(基础版)
2018/04/01 Python
Python字符串格式化常用手段及注意事项
2020/06/17 Python
Python中logging日志的四个等级和使用
2020/11/17 Python
DRF使用simple JWT身份验证的实现
2021/01/14 Python
Python环境搭建过程从安装到Hello World
2021/02/05 Python
阿迪达斯越南官网:adidas越南
2020/07/19 全球购物
Linux面试题LINUX系统类
2014/11/19 面试题
什么时候用assert
2015/05/08 面试题
优秀员工个人的自我评价
2013/11/29 职场文书
合伙经营协议书
2014/04/18 职场文书
安全例会汇报材料
2014/08/23 职场文书
社区好人好事材料
2014/12/26 职场文书
同意转租证明
2015/06/24 职场文书
汽车销售合同文本
2019/08/08 职场文书