python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析


Posted in Python onApril 14, 2021

一、环境准备

  • python3.8.3
  • pycharm
  • 项目所需第三方包
pip install scrapy fake-useragent requests selenium virtualenv -i https://pypi.douban.com/simple

1.1 创建虚拟环境

切换到指定目录创建

virtualenv .venv

创建完记得激活虚拟环境

1.2 创建项目

scrapy startproject 项目名称

1.3 使用pycharm打开项目,将创建的虚拟环境配置到项目中来
1.4 创建京东spider

scrapy genspider 爬虫名称 url

1.5 修改允许访问的域名,删除https:

二、问题分析

爬取数据的思路是先获取首页的基本信息,在获取详情页商品详细信息;爬取京东数据时,只返回40条数据,这里,作者使用selenium,在scrapy框架中编写下载器中间件,返回页面所有数据。
爬取的字段分别是:

商品价格

商品评数

商品店家

商品SKU(京东可直接搜索到对应的产品)

商品标题

商品详细信息

三、spider

import re
import scrapy


from lianjia.items import jd_detailItem


class JiComputerDetailSpider(scrapy.Spider):
    name = 'ji_computer_detail'
    allowed_domains = ['search.jd.com', 'item.jd.com']
    start_urls = [
        'https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page=1&s=1&click=0']

    def parse(self, response):
        lls = response.xpath('//ul[@class="gl-warp clearfix"]/li')
        for ll in lls:
            item = jd_detailItem()
            computer_price = ll.xpath('.//div[@class="p-price"]/strong/i/text()').extract_first()
            computer_commit = ll.xpath('.//div[@class="p-commit"]/strong/a/text()').extract_first()
            computer_p_shop = ll.xpath('.//div[@class="p-shop"]/span/a/text()').extract_first()
            item['computer_price'] = computer_price
            item['computer_commit'] = computer_commit
            item['computer_p_shop'] = computer_p_shop
            meta = {
                'item': item
            }
            shop_detail_url = ll.xpath('.//div[@class="p-img"]/a/@href').extract_first()
            shop_detail_url = 'https:' + shop_detail_url
            yield scrapy.Request(url=shop_detail_url, callback=self.detail_parse, meta=meta)
        for i in range(2, 200, 2):
            next_page_url = f'https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page={i}&s=116&click=0'
            yield scrapy.Request(url=next_page_url, callback=self.parse)

    def detail_parse(self, response):
        item = response.meta.get('item')
        computer_sku = response.xpath('//a[@class="notice J-notify-sale"]/@data-sku').extract_first()
        item['computer_sku'] = computer_sku
        computer_title = response.xpath('//div[@class="sku-name"]/text()').extract_first().strip()
        computer_title = ''.join(re.findall('\S', computer_title))
        item['computer_title'] = computer_title
        computer_detail = response.xpath('string(//ul[@class="parameter2 p-parameter-list"])').extract_first().strip()
        computer_detail = ''.join(re.findall('\S', computer_detail))
        item['computer_detail'] = computer_detail
        yield item

四、item

class jd_detailItem(scrapy.Item):
    # define the fields for your item here like:
    computer_sku = scrapy.Field()
    computer_price = scrapy.Field()
    computer_title = scrapy.Field()
    computer_commit = scrapy.Field()
    computer_p_shop = scrapy.Field()
    computer_detail = scrapy.Field()

五、setting

import random


from fake_useragent import UserAgent
ua = UserAgent()
USER_AGENT = ua.random
ROBOTSTXT_OBEY = False
DOWNLOAD_DELAY = random.uniform(0.5, 1)
DOWNLOADER_MIDDLEWARES = {
    'lianjia.middlewares.jdDownloaderMiddleware': 543
}
ITEM_PIPELINES = {
    'lianjia.pipelines.jd_csv_Pipeline': 300
}

六、pipelines

class jd_csv_Pipeline:
    # def process_item(self, item, spider):
    #     return item
    def open_spider(self, spider):
        self.fp = open('./jd_computer_message.xlsx', mode='w+', encoding='utf-8')
        self.fp.write('computer_sku\tcomputer_title\tcomputer_p_shop\tcomputer_price\tcomputer_commit\tcomputer_detail\n')

    def process_item(self, item, spider):
        # 写入文件
        try:
            line = '\t'.join(list(item.values())) + '\n'
            self.fp.write(line)
            return item
        except:
            pass

    def close_spider(self, spider):
        # 关闭文件
        self.fp.close()

七、middlewares

class jdDownloaderMiddleware:
    def process_request(self, request, spider):
        # 判断是否是ji_computer_detail的爬虫
        # 判断是否是首页
        if spider.name == 'ji_computer_detail' and re.findall(f'.*(item.jd.com).*', request.url) == []:
            options = ChromeOptions()
            options.add_argument("--headless")
            driver = webdriver.Chrome(options=options)
            driver.get(request.url)
            for i in range(0, 15000, 5000):
                driver.execute_script(f'window.scrollTo(0, {i})')
                time.sleep(0.5)
            body = driver.page_source.encode()
            time.sleep(1)
            return HtmlResponse(url=request.url, body=body, request=request)
        return None

八、使用jupyter进行简单的处理和分析

其他文件:百度停用词库、简体字文件
下载第三方包

!pip install seaborn jieba wordcloud PIL  -i https://pypi.douban.com/simple

8.1导入第三方包

import re
import os
import jieba
import wordcloud
import pandas as pd
import numpy as np
from PIL import Image
import seaborn as sns
from docx import Document
from docx.shared import Inches
import matplotlib.pyplot as plt
from pandas import DataFrame,Series

8.2设置可视化的默认字体和seaborn的样式

sns.set_style('darkgrid')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

8.3读取数据

df_jp = pd.read_excel('./jd_shop.xlsx')

8.4筛选Inteli5、i7、i9处理器数据

def convert_one(s):
    if re.findall(f'.*?(i5).*', str(s)) != []:
        return re.findall(f'.*?(i5).*', str(s))[0]
    elif re.findall(f'.*?(i7).*', str(s)) != []:
        return re.findall(f'.*?(i7).*', str(s))[0]
    elif re.findall(f'.*?(i9).*', str(s)) != []:
        return re.findall(f'.*?(i9).*', str(s))[0]
df_jp['computer_intel'] = df_jp['computer_detail'].map(convert_one)

8.5筛选笔记本电脑的屏幕尺寸范围

def convert_two(s):
    if re.findall(f'.*?(\d+\.\d+英寸-\d+\.\d+英寸).*', str(s)) != []:
        return re.findall(f'.*?(\d+\.\d+英寸-\d+\.\d+英寸).*', str(s))[0]
df_jp['computer_in'] = df_jp['computer_detail'].map(convert_two)

8.6将评论数转化为整形

def convert_three(s):
    if re.findall(f'(\d+)万+', str(s)) != []:
        number = int(re.findall(f'(\d+)万+', str(s))[0]) * 10000
        return number
    elif re.findall(f'(\d+)+', str(s)) != []:
        number = re.findall(f'(\d+)+', str(s))[0]
        return number
df_jp['computer_commit'] = df_jp['computer_commit'].map(convert_three)

8.7筛选出需要分析的品牌

def find_computer(name, s):
    sr = re.findall(f'.*({name}).*', str(s))[0]
    return sr
def convert(s):
    if re.findall(f'.*(联想).*', str(s)) != []:
        return find_computer('联想', s)
    elif re.findall(f'.*(惠普).*', str(s)) != []:
        return find_computer('惠普', s)
    elif re.findall(f'.*(华为).*', str(s)) != []:
        return find_computer('华为', s)
    elif re.findall(f'.*(戴尔).*', str(s)) != []:
        return find_computer('戴尔', s)
    elif re.findall(f'.*(华硕).*', str(s)) != []:
        return find_computer('华硕', s)
    elif re.findall(f'.*(小米).*', str(s)) != []:
        return find_computer('小米', s)
    elif re.findall(f'.*(荣耀).*', str(s)) != []:
        return find_computer('荣耀', s)
    elif re.findall(f'.*(神舟).*', str(s)) != []:
        return find_computer('神舟', s)
    elif re.findall(f'.*(外星人).*', str(s)) != []:
        return find_computer('外星人', s)
df_jp['computer_p_shop'] = df_jp['computer_p_shop'].map(convert)

8.8删除指定字段为空值的数据

for n in ['computer_price', 'computer_commit', 'computer_p_shop', 'computer_sku', 'computer_detail', 'computer_intel', 'computer_in']:
    index_ls = df_jp[df_jp[[n]].isnull().any(axis=1)==True].index
    df_jp.drop(index=index_ls, inplace=True)

8.9查看各品牌的平均价格

plt.figure(figsize=(10, 8), dpi=100)
ax = sns.barplot(x='computer_p_shop', y='computer_price', data=df_jp.groupby(by='computer_p_shop')[['computer_price']].mean().reset_index())
for index,row in df_jp.groupby(by='computer_p_shop')[['computer_price']].mean().reset_index().iterrows():
    ax.text(row.name,row['computer_price'] + 2,round(row['computer_price'],2),color="black",ha="center")
ax.set_xlabel('品牌')
ax.set_ylabel('平均价格')
ax.set_title('各品牌平均价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('各品牌平均价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.10 查看各品牌的价格区间

plt.figure(figsize=(10, 8), dpi=100)
ax = sns.boxenplot(x='computer_p_shop', y='computer_price', data=df_jp.query('computer_price>500'))
ax.set_xlabel('品牌')
ax.set_ylabel('价格区间')
ax.set_title('各品牌价格区间')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('各品牌价格区间.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.11 查看价格与评论数的关系

df_jp['computer_commit'] = df_jp['computer_commit'].astype('int64')
ax = sns.jointplot(x="computer_commit", y="computer_price", data=df_jp, kind="reg", truncate=False,color="m", height=10)
ax.fig.savefig('评论数与价格的关系.png')

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.12 查看商品标题里出现的关键词

import imageio

# 将特征转换为列表
ls = df_jp['computer_title'].to_list()
# 替换非中英文的字符
feature_points = [re.sub(r'[^a-zA-Z\u4E00-\u9FA5]+',' ',str(feature)) for feature in ls]
# 读取停用词
stop_world = list(pd.read_csv('./百度停用词表.txt', engine='python', encoding='utf-8', names=['stopwords'])['stopwords'])
feature_points2 = []
for feature in feature_points:  # 遍历每一条评论
    words = jieba.lcut(feature) # 精确模式,没有冗余.对每一条评论进行jieba分词
    ind1 = np.array([len(word) > 1 for word in words])  # 判断每个分词的长度是否大于1
    ser1 = pd.Series(words)
    ser2 = ser1[ind1] # 筛选分词长度大于1的分词留下
    ind2 = ~ser2.isin(stop_world)  # 注意取反负号
    ser3 = ser2[ind2].unique()  # 筛选出不在停用词表的分词留下,并去重
    if len(ser3) > 0:
        feature_points2.append(list(ser3))
# 将所有分词存储到一个列表中
wordlist = [word for feature in feature_points2 for word in feature]
# 将列表中所有的分词拼接成一个字符串
feature_str =  ' '.join(wordlist)   
# 标题分析
font_path = r'./simhei.ttf'
shoes_box_jpg = imageio.imread('./home.jpg')
wc=wordcloud.WordCloud(
    background_color='black',
    mask=shoes_box_jpg,
    font_path = font_path,
    min_font_size=5,
    max_font_size=50,
    width=260,
    height=260,
)
wc.generate(feature_str)
plt.figure(figsize=(10, 8), dpi=100)
plt.imshow(wc)
plt.axis('off')
plt.savefig('标题提取关键词')

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.13 筛选价格在4000到5000,联想品牌、处理器是i5、屏幕大小在15寸以上的数据并查看价格

df_jd_query = df_jp.loc[(df_jp['computer_price'] <=5000) & (df_jp['computer_price']>=4000) & (df_jp['computer_p_shop']=="联想") & (df_jp['computer_intel']=="i5") & (df_jp['computer_in']=="15.0英寸-15.9英寸"), :].copy()
plt.figure(figsize=(20, 10), dpi=100)
ax = sns.barplot(x='computer_sku', y='computer_price', data=df_jd_query)
ax.set_xlabel('联想品牌SKU')
ax.set_ylabel('价格')
ax.set_title('酷睿i5处理器屏幕15寸以上各SKU的价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('酷睿i5处理器屏幕15寸以上各SKU的价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.14 筛选价格在4000到5000,戴尔品牌、处理器是i7、屏幕大小在15寸以上的数据并查看价格

df_jp_daier = df_jp.loc[(df_jp['computer_price'] <=5000) & (df_jp['computer_price']>=4000) & (df_jp['computer_p_shop']=="戴尔") & (df_jp['computer_intel']=="i7") & (df_jp['computer_in']=="15.0英寸-15.9英寸"), :].copy()
plt.figure(figsize=(10, 8), dpi=100)
ax = sns.barplot(x='computer_sku', y='computer_price', data=df_jp_daier)
ax.set_xlabel('戴尔品牌SKU')
ax.set_ylabel('价格')
ax.set_title('酷睿i7处理器屏幕15寸以上各SKU的价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('酷睿i7处理器屏幕15寸以上各SKU的价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.15 不同Intel处理器品牌的价格

plt.figure(figsize=(10, 8), dpi=100)
ax = sns.barplot(x='computer_p_shop', y='computer_price', data=df_jp, hue='computer_intel')
ax.set_xlabel('品牌')
ax.set_ylabel('价格')
ax.set_title('不同酷睿处理器品牌的价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('不同酷睿处理器品牌的价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

8.16 不同尺寸品牌的价格

plt.figure(figsize=(10, 8), dpi=100)
ax = sns.barplot(x='computer_p_shop', y='computer_price', data=df_jp, hue='computer_in')
ax.set_xlabel('品牌')
ax.set_ylabel('价格')
ax.set_title('不同尺寸品牌的价格')
boxplot_fig = ax.get_figure()
boxplot_fig.savefig('不同尺寸品牌的价格.png', dpi=400)

python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析

以上就是python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析的详细内容,更多关于python 爬取京东数据的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python ORM框架SQLAlchemy学习笔记之数据查询实例
Jun 10 Python
python简单猜数游戏实例
Jul 09 Python
基于python中staticmethod和classmethod的区别(详解)
Oct 24 Python
Python入门之三角函数tan()函数实例详解
Nov 08 Python
对numpy中array和asarray的区别详解
Apr 17 Python
Python解决八皇后问题示例
Apr 22 Python
matplotlib subplots 设置总图的标题方法
May 25 Python
Django之模型层多表操作的实现
Jan 08 Python
python实现连连看辅助(图像识别)
Mar 25 Python
TensorFlow实现checkpoint文件转换为pb文件
Feb 10 Python
Python中使用Selenium环境安装的方法步骤
Feb 22 Python
利用python做数据拟合详情
Nov 17 Python
深度学习小工程练习之垃圾分类详解
python3美化表格数据输出结果的实现代码
Apr 14 #Python
Python生成九宫格图片的示例代码
用Python写一个简易版弹球游戏
python urllib库的使用详解
Apr 13 #Python
用Python将库打包发布到pypi
python xlwt模块的使用解析
You might like
打造计数器DIY三步曲(中)
2006/10/09 PHP
php 分页函数multi() discuz
2009/06/21 PHP
一些被忽视的PHP函数(简单整理)
2010/04/30 PHP
解析MySql与Java的时间类型
2013/06/22 PHP
PHP保留两位小数并且四舍五入及不四舍五入的方法
2013/09/22 PHP
微信公众平台DEMO(PHP)
2016/05/04 PHP
ThinkPHP Where 条件中常用表达式示例(详解)
2017/03/31 PHP
Laravel中服务提供者和门面模式的入门介绍
2017/11/06 PHP
PHP ob缓存以及ob函数原理实例解析
2020/11/13 PHP
Javascript 颜色渐变效果的实现代码
2013/10/01 Javascript
js中创建对象的几种方式示例介绍
2014/01/26 Javascript
jQuery实现鼠标滑向当前图片高亮显示并且其它图片变灰的方法
2015/07/27 Javascript
原生JS实现美图瀑布流布局赏析
2015/09/07 Javascript
jQuery Uploadify 上传插件出现Http Error 302 错误的解决办法
2015/12/12 Javascript
js实现将选中内容分享到新浪或腾讯微博
2015/12/16 Javascript
原生JS实现平滑回到顶部组件
2016/03/16 Javascript
Mvc提交表单的四种方法全程详解
2016/08/10 Javascript
JS中判断null的方法分析
2016/11/21 Javascript
JavaScript订单操作小程序完整版
2017/06/23 Javascript
Vue 2.0学习笔记之使用$refs访问Vue中的DOM
2017/12/19 Javascript
vue awesome swiper异步加载数据出现的bug问题
2018/07/03 Javascript
JS实现的视频弹幕效果示例
2018/08/17 Javascript
layer弹出层显示在top顶层的方法
2019/09/11 Javascript
JavaScript 函数用法详解【函数定义、参数、绑定、作用域、闭包等】
2020/05/12 Javascript
Vue-router中hash模式与history模式的区别详解
2020/12/15 Vue.js
[43:24]VG vs Serenity 2018国际邀请赛小组赛BO2 第二场 8.17
2018/08/20 DOTA
Python中函数的参数定义和可变参数用法实例分析
2015/06/04 Python
python导入时小括号大作用
2017/01/10 Python
Django 框架模型操作入门教程
2019/11/05 Python
Python IDE环境之 新版Pycharm安装详细教程
2020/03/05 Python
英国的知名精品百货公司:House of Fraser(福来德)
2016/08/14 全球购物
大整数数相乘的问题
2012/07/22 面试题
期终自我鉴定
2014/02/17 职场文书
研究生考核个人自我鉴定
2014/03/27 职场文书
2014年学生会干事工作总结
2014/11/07 职场文书
计算机教师工作总结
2015/08/13 职场文书