使用Keras中的ImageDataGenerator进行批次读图方式


Posted in Python onJune 17, 2020

ImageDataGenerator位于keras.preprocessing.image模块当中,可用于做数据增强,或者仅仅用于一个批次一个批次的读进图片数据.一开始以为ImageDataGenerator是用来做数据增强的,但我的目的只是想一个batch一个batch的读进图片而已,所以一开始没用它,后来发现它是有这个功能的,而且使用起来很方便.

ImageDataGenerator类包含了如下参数:(keras中文教程)

ImageDataGenerator(featurewise_center=False, #布尔值。将输入数据的均值设置为 0,逐特征进行
 samplewise_center=False, #布尔值。将每个样本的均值设置为 0
 featurewise_std_normalization=False, #布尔值。将输入除以数据标准差,逐特征进行
 samplewise_std_normalization=False, #布尔值。将每个输入除以其标准差
 zca_whitening=False, #是否进行ZAC白化
 zca_epsilon=1e-06, #ZCA 白化的 epsilon 值
 rotation_range=0, #整数。随机旋转的度数范围
 width_shift_range=0.0, 
 height_shift_range=0.0, 
 brightness_range=None, 
 shear_range=0.0, #浮点数。剪切强度(以弧度逆时针方向剪切角度)
 zoom_range=0.0, #浮点数 或 [lower, upper]。随机缩放范围。如果是浮点数,[lower, upper] = [1-zoom_range, 1+zoom_range]。
 channel_shift_range=0.0, #浮点数。随机通道转换的范围
 fill_mode='nearest', #输入边界以外的点的模式填充
 cval=0.0, #当 fill_mode = "constant",边界点的填充值
 horizontal_flip=False, #随机水平翻转
 vertical_flip=False, #随机垂直翻
 rescale=None, #默认为 None。如果是 None 或 0,不进行缩放,否则将数据乘以所提供的值(在应用任何其他转换之前)
 preprocessing_function=None, #应用于每个输入的函数。这个函数会在任何其他改变之前运行。这个函数需要一个参数:一张图像(秩为 3 的 Numpy 张量),并且应该输出一个同尺寸的 Numpy 张量。
 data_format=None, #图像数据格式,{"channels_first", "channels_last"} 之一
 validation_split=0.0, 
 dtype=None) #生成数组使用的数据类型

虽然包含了很多参数,但实际应用时用到的并不会很多,假设我的目的只是一个batch一个batch的读进图片,那么,我在实例化对象的时候什么参数都不需要设置,然后再调用ImageDataGenerator类的成员函数flow_from_directory()就可以从目录中读图.

我放图片的目录如下图,在train文件夹中包含了两个子文件夹,然后在两个子文件夹里面分别包含了猫和狗的图片.

使用Keras中的ImageDataGenerator进行批次读图方式

先看看flow_from_directory()的参数.需要注意的是,第一个参数directory不是图片的路径,而是子文件夹的路径,还有就是第四个参数classes,它填写是子文件夹的名称,比如此处的为['cat', 'dog'],然后该函数就会自动把两个子文件夹看成是2个类别,cat文件夹里面所有图片的标签都为0,dog文件夹里面所有图片的标签都为1.而且可以通过设置第5个参数class_mode把标签设置为ont-hot形式(默认的categorical就是one-hot 形式).可以看出,这个函数有多方便,直接把标签和原图对应起来了.

def flow_from_directory(self,
 directory, #子文件夹所在的目录
 target_size=(256, 256), #输出的图片的尺寸
 color_mode='rgb', #单通道还是三通道
 classes=None, #类别,有多少个子文件夹就有多少个类别,填写的是子文件夹的名称
 class_mode='categorical', #通常默认,表示标签采用one-hot形式,
 batch_size=32, 
 shuffle=True, #是否随机打乱顺序
 seed=None,
 save_to_dir=None, #把图片保存,输入的是路径
 save_prefix='', #图像前缀名,
 save_format='png', #图像后缀名
 follow_links=False,
 subset=None,
 interpolation='nearest')

接下来看一个例子,部分代码.

from tensorflow.keras.preprocessing.image import ImageDataGenerator #我是直接装tensorflow,然后使用里面的keras的,
 
#实例化对象datagen
datagen=ImageDataGenerator() 
 
#读训练集图片
train_generator = datagen.flow_from_directory(
 '/home/hky/folder/kaggle/DataGenerator/train',
 classes=['cat','dog'],
 target_size=(227, 227),
 class_mode='categorical',
 batch_size=batch_size)
 
#读验证集图片
validation_generator = datagen.flow_from_directory(
 '/home/hky/folder/kaggle/DataGenerator/validation',
 classes=['cat','dog'],
 target_size=(227, 227),
 class_mode='categorical',
 batch_size=batch_size)
 
'''开始训练'''
#steps_per_epoch是为了判断是否完成了一个epoch,这里我训练集有20000张图片,然后batch_size=16,所以是10000/16
#同样,validation_steps=2496/16是因为我的验证集有2496张图片
model.fit_generator(generator=train_generator,steps_per_epoch=20000/16,epochs=10,validation_data=validation_generator,validation_steps=2496/16)

下面是完整代码,实现了一个AlexNet模型.

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing import image
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import optimizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import cv2
import yaml
from tensorflow.keras.models import model_from_yaml
 
batch_size = 16
 
''' 搭建模型'''
l=tf.keras.layers
model=Sequential()
 
#第一层卷积和池化
model.add(l.Conv2D(filters=96,kernel_size=(11,11),strides=(4,4),padding='valid',input_shape=(227,227,3),activation='relu'))
model.add(l.BatchNormalization())
model.add(l.MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='valid'))
 
#第二层卷积和池化
model.add(l.Conv2D(256,(5,5),(1,1),padding='same',activation='relu'))
model.add(l.BatchNormalization())
model.add(l.MaxPooling2D((3,3),(2,2),padding='valid'))
 
#第三层卷积
model.add(l.Conv2D(384,(3,3),(1,1),'same',activation='relu'))
 
#第四层卷积
model.add(l.Conv2D(384,(3,3),(1,1),'same',activation='relu'))
 
#第五层卷积和池化
model.add(l.Conv2D(256,(3,3),(1,1),'same',activation='relu'))
model.add(l.MaxPooling2D((3,3),(2,2),'valid'))
 
#全连接层
model.add(l.Flatten())
model.add(l.Dense(4096,activation='relu'))
model.add(l.Dropout(0.5))
 
model.add(l.Dense(4096,activation='relu'))
model.add(l.Dropout(0.5))
 
model.add(l.Dense(1000,activation='relu'))
model.add(l.Dropout(0.5))
 
#输出层
model.add(l.Dense(2,activation='softmax'))
model.compile(optimizer='sgd',loss='categorical_crossentropy',metrics=['accuracy'])
 
'''导入图片数据'''
#利用ImageDataGenerator生成一个batch一个batch的数据
 
datagen=ImageDataGenerator(samplewise_center=True,rescale=1.0/255) #samplewise_center:使输入数据的每个样本均值为0,rescale:归一化
train_generator = datagen.flow_from_directory(
 '/home/hky/folder/kaggle/DataGenerator/train',
 classes=['cat','dog'],
 target_size=(227, 227),
 class_mode='categorical',
 batch_size=batch_size)
 
validation_generator = datagen.flow_from_directory(
 '/home/hky/folder/kaggle/DataGenerator/validation',
 classes=['cat','dog'],
 target_size=(227, 227),
 class_mode='categorical',
 batch_size=batch_size)
 
'''开始训练'''
model.fit_generator(generator=train_generator,steps_per_epoch=20000/16,epochs=10,validation_data=validation_generator,validation_steps=2496/16)
 
yaml_string = model.to_yaml() # 保存模型结构到yaml文件
open('./model_architecture.yaml', 'w').write(yaml_string)
model.save_weights('./AlexNet_model.h5') #保存模型参数
 
'''导入模型'''
#model = model_from_yaml(open('./model_architecture.yaml').read())
#model.load_weights('./AlexNet_model.h5')
 
'''随便输入一张图片测试一下'''
imgs=[]
img=cv2.imread('/home/hky/folder/kaggle/test/120.jpg')
img=cv2.resize(img,(227,227))
imgs.append(img)
a=np.array(imgs)
 
result=model.predict(a)
idx=np.argmax(result)
 
if idx==0:
 print('the image is cat\n')
else:
 print('the image is dog\n')
 
cv2.imshow("image",img)
cv2.waitKey(0)

以上这篇使用Keras中的ImageDataGenerator进行批次读图方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中获取网页状态码的两个方法
Nov 03 Python
Python实时获取cmd的输出
Dec 13 Python
使用python为mysql实现restful接口
Jan 05 Python
tensorflow学习笔记之mnist的卷积神经网络实例
Apr 15 Python
python实现指定字符串补全空格、前面填充0的方法
Nov 16 Python
python实现简单的文字识别
Nov 27 Python
Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围
Jun 25 Python
Python语言异常处理测试过程解析
Jan 08 Python
python GUI库图形界面开发之PyQt5菜单栏控件QMenuBar的详细使用方法与实例
Feb 28 Python
构建高效的python requests长连接池详解
May 02 Python
Python 实现将numpy中的nan和inf,nan替换成对应的均值
Jun 08 Python
python opencv人脸识别考勤系统的完整源码
Apr 26 Python
python里的单引号和双引号的有什么作用
Jun 17 #Python
没编程基础可以学python吗
Jun 17 #Python
keras实现图像预处理并生成一个generator的案例
Jun 17 #Python
pytorch快速搭建神经网络_Sequential操作
Jun 17 #Python
浅谈Keras的Sequential与PyTorch的Sequential的区别
Jun 17 #Python
Keras之fit_generator与train_on_batch用法
Jun 17 #Python
基于Keras的格式化输出Loss实现方式
Jun 17 #Python
You might like
PHP4中session登录页面的应用
2008/07/25 PHP
PHP中将字符串转化为整数(int) intval() printf() 性能测试
2020/03/20 PHP
php实现背景图上添加圆形logo图标的方法
2016/11/17 PHP
zend框架实现支持sql server的操作方法
2016/12/08 PHP
PHP两种实现无级递归分类的方法
2017/03/02 PHP
PHP实现权限管理功能示例
2017/09/22 PHP
初学js 新节点的创建 删除 的步骤
2011/07/04 Javascript
JS实现网页标题随机显示名人名言的方法
2015/11/03 Javascript
jQuery EasyUI 右键菜单--关闭标签/选项卡的简单实例
2016/10/10 Javascript
Javascript 高性能之递归,迭代,查表法详解及实例
2017/01/08 Javascript
使用ionic播放轮询广告的实现方法(必看)
2017/04/24 Javascript
ES6中新增的Object.assign()方法详解
2017/09/22 Javascript
mui框架移动开发初体验详解
2017/10/11 Javascript
JavaScript闭包原理与用法实例分析
2018/08/10 Javascript
解决angularjs前后端分离调用接口传递中文时中文乱码的问题
2018/08/13 Javascript
layui select获取自定义属性方法
2018/08/15 Javascript
vue项目中使用AES实现密码加密解密(ECB和CBC两种模式)
2019/08/12 Javascript
Vue+Element实现网页版个人简历系统(推荐)
2019/12/31 Javascript
微信小程序服务器日期格式化问题
2020/01/07 Javascript
react-router-dom 嵌套路由的实现
2020/05/02 Javascript
Vue 使用typescript如何优雅的调用swagger API
2020/09/01 Javascript
vue render函数动态加载img的src路径操作
2020/10/26 Javascript
跟老齐学Python之编写类之三子类
2014/10/11 Python
Python中实现参数类型检查的简单方法
2015/04/21 Python
在Django中同时使用多个配置文件的方法
2015/07/22 Python
简单谈谈Python中的json与pickle
2017/07/19 Python
浅谈python日志的配置文件路径问题
2018/04/28 Python
用Python将一个列表分割成小列表的实例讲解
2018/07/02 Python
基于DOM+CSS3实现OrgChart组织结构图插件
2016/03/02 HTML / CSS
联想墨西哥官方网站:Lenovo墨西哥
2016/08/17 全球购物
戴森美国官网:Dyson美国
2016/09/11 全球购物
Perfumetrader荷兰:香水、化妆品和护肤品在线商店
2017/09/15 全球购物
思想政治教育专业个人求职信范文
2013/12/20 职场文书
晶体管来复再生式二管收音机
2021/04/22 无线电
python文件目录操作之os模块
2021/05/08 Python
浅谈pytorch中的dropout的概率p
2021/05/27 Python