使用Keras中的ImageDataGenerator进行批次读图方式


Posted in Python onJune 17, 2020

ImageDataGenerator位于keras.preprocessing.image模块当中,可用于做数据增强,或者仅仅用于一个批次一个批次的读进图片数据.一开始以为ImageDataGenerator是用来做数据增强的,但我的目的只是想一个batch一个batch的读进图片而已,所以一开始没用它,后来发现它是有这个功能的,而且使用起来很方便.

ImageDataGenerator类包含了如下参数:(keras中文教程)

ImageDataGenerator(featurewise_center=False, #布尔值。将输入数据的均值设置为 0,逐特征进行
 samplewise_center=False, #布尔值。将每个样本的均值设置为 0
 featurewise_std_normalization=False, #布尔值。将输入除以数据标准差,逐特征进行
 samplewise_std_normalization=False, #布尔值。将每个输入除以其标准差
 zca_whitening=False, #是否进行ZAC白化
 zca_epsilon=1e-06, #ZCA 白化的 epsilon 值
 rotation_range=0, #整数。随机旋转的度数范围
 width_shift_range=0.0, 
 height_shift_range=0.0, 
 brightness_range=None, 
 shear_range=0.0, #浮点数。剪切强度(以弧度逆时针方向剪切角度)
 zoom_range=0.0, #浮点数 或 [lower, upper]。随机缩放范围。如果是浮点数,[lower, upper] = [1-zoom_range, 1+zoom_range]。
 channel_shift_range=0.0, #浮点数。随机通道转换的范围
 fill_mode='nearest', #输入边界以外的点的模式填充
 cval=0.0, #当 fill_mode = "constant",边界点的填充值
 horizontal_flip=False, #随机水平翻转
 vertical_flip=False, #随机垂直翻
 rescale=None, #默认为 None。如果是 None 或 0,不进行缩放,否则将数据乘以所提供的值(在应用任何其他转换之前)
 preprocessing_function=None, #应用于每个输入的函数。这个函数会在任何其他改变之前运行。这个函数需要一个参数:一张图像(秩为 3 的 Numpy 张量),并且应该输出一个同尺寸的 Numpy 张量。
 data_format=None, #图像数据格式,{"channels_first", "channels_last"} 之一
 validation_split=0.0, 
 dtype=None) #生成数组使用的数据类型

虽然包含了很多参数,但实际应用时用到的并不会很多,假设我的目的只是一个batch一个batch的读进图片,那么,我在实例化对象的时候什么参数都不需要设置,然后再调用ImageDataGenerator类的成员函数flow_from_directory()就可以从目录中读图.

我放图片的目录如下图,在train文件夹中包含了两个子文件夹,然后在两个子文件夹里面分别包含了猫和狗的图片.

使用Keras中的ImageDataGenerator进行批次读图方式

先看看flow_from_directory()的参数.需要注意的是,第一个参数directory不是图片的路径,而是子文件夹的路径,还有就是第四个参数classes,它填写是子文件夹的名称,比如此处的为['cat', 'dog'],然后该函数就会自动把两个子文件夹看成是2个类别,cat文件夹里面所有图片的标签都为0,dog文件夹里面所有图片的标签都为1.而且可以通过设置第5个参数class_mode把标签设置为ont-hot形式(默认的categorical就是one-hot 形式).可以看出,这个函数有多方便,直接把标签和原图对应起来了.

def flow_from_directory(self,
 directory, #子文件夹所在的目录
 target_size=(256, 256), #输出的图片的尺寸
 color_mode='rgb', #单通道还是三通道
 classes=None, #类别,有多少个子文件夹就有多少个类别,填写的是子文件夹的名称
 class_mode='categorical', #通常默认,表示标签采用one-hot形式,
 batch_size=32, 
 shuffle=True, #是否随机打乱顺序
 seed=None,
 save_to_dir=None, #把图片保存,输入的是路径
 save_prefix='', #图像前缀名,
 save_format='png', #图像后缀名
 follow_links=False,
 subset=None,
 interpolation='nearest')

接下来看一个例子,部分代码.

from tensorflow.keras.preprocessing.image import ImageDataGenerator #我是直接装tensorflow,然后使用里面的keras的,
 
#实例化对象datagen
datagen=ImageDataGenerator() 
 
#读训练集图片
train_generator = datagen.flow_from_directory(
 '/home/hky/folder/kaggle/DataGenerator/train',
 classes=['cat','dog'],
 target_size=(227, 227),
 class_mode='categorical',
 batch_size=batch_size)
 
#读验证集图片
validation_generator = datagen.flow_from_directory(
 '/home/hky/folder/kaggle/DataGenerator/validation',
 classes=['cat','dog'],
 target_size=(227, 227),
 class_mode='categorical',
 batch_size=batch_size)
 
'''开始训练'''
#steps_per_epoch是为了判断是否完成了一个epoch,这里我训练集有20000张图片,然后batch_size=16,所以是10000/16
#同样,validation_steps=2496/16是因为我的验证集有2496张图片
model.fit_generator(generator=train_generator,steps_per_epoch=20000/16,epochs=10,validation_data=validation_generator,validation_steps=2496/16)

下面是完整代码,实现了一个AlexNet模型.

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing import image
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import optimizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import cv2
import yaml
from tensorflow.keras.models import model_from_yaml
 
batch_size = 16
 
''' 搭建模型'''
l=tf.keras.layers
model=Sequential()
 
#第一层卷积和池化
model.add(l.Conv2D(filters=96,kernel_size=(11,11),strides=(4,4),padding='valid',input_shape=(227,227,3),activation='relu'))
model.add(l.BatchNormalization())
model.add(l.MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='valid'))
 
#第二层卷积和池化
model.add(l.Conv2D(256,(5,5),(1,1),padding='same',activation='relu'))
model.add(l.BatchNormalization())
model.add(l.MaxPooling2D((3,3),(2,2),padding='valid'))
 
#第三层卷积
model.add(l.Conv2D(384,(3,3),(1,1),'same',activation='relu'))
 
#第四层卷积
model.add(l.Conv2D(384,(3,3),(1,1),'same',activation='relu'))
 
#第五层卷积和池化
model.add(l.Conv2D(256,(3,3),(1,1),'same',activation='relu'))
model.add(l.MaxPooling2D((3,3),(2,2),'valid'))
 
#全连接层
model.add(l.Flatten())
model.add(l.Dense(4096,activation='relu'))
model.add(l.Dropout(0.5))
 
model.add(l.Dense(4096,activation='relu'))
model.add(l.Dropout(0.5))
 
model.add(l.Dense(1000,activation='relu'))
model.add(l.Dropout(0.5))
 
#输出层
model.add(l.Dense(2,activation='softmax'))
model.compile(optimizer='sgd',loss='categorical_crossentropy',metrics=['accuracy'])
 
'''导入图片数据'''
#利用ImageDataGenerator生成一个batch一个batch的数据
 
datagen=ImageDataGenerator(samplewise_center=True,rescale=1.0/255) #samplewise_center:使输入数据的每个样本均值为0,rescale:归一化
train_generator = datagen.flow_from_directory(
 '/home/hky/folder/kaggle/DataGenerator/train',
 classes=['cat','dog'],
 target_size=(227, 227),
 class_mode='categorical',
 batch_size=batch_size)
 
validation_generator = datagen.flow_from_directory(
 '/home/hky/folder/kaggle/DataGenerator/validation',
 classes=['cat','dog'],
 target_size=(227, 227),
 class_mode='categorical',
 batch_size=batch_size)
 
'''开始训练'''
model.fit_generator(generator=train_generator,steps_per_epoch=20000/16,epochs=10,validation_data=validation_generator,validation_steps=2496/16)
 
yaml_string = model.to_yaml() # 保存模型结构到yaml文件
open('./model_architecture.yaml', 'w').write(yaml_string)
model.save_weights('./AlexNet_model.h5') #保存模型参数
 
'''导入模型'''
#model = model_from_yaml(open('./model_architecture.yaml').read())
#model.load_weights('./AlexNet_model.h5')
 
'''随便输入一张图片测试一下'''
imgs=[]
img=cv2.imread('/home/hky/folder/kaggle/test/120.jpg')
img=cv2.resize(img,(227,227))
imgs.append(img)
a=np.array(imgs)
 
result=model.predict(a)
idx=np.argmax(result)
 
if idx==0:
 print('the image is cat\n')
else:
 print('the image is dog\n')
 
cv2.imshow("image",img)
cv2.waitKey(0)

以上这篇使用Keras中的ImageDataGenerator进行批次读图方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python制作一个桌面便签软件
Aug 09 Python
python 遍历字符串(含汉字)实例详解
Apr 04 Python
python中的break、continue、exit()、pass全面解析
Aug 05 Python
django之session与分页(实例讲解)
Nov 13 Python
python实现简单tftp(基于udp协议)
Jul 30 Python
wxPython色环电阻计算器
Nov 18 Python
Python requests模块基础使用方法实例及高级应用(自动登陆,抓取网页源码)实例详解
Feb 14 Python
python datetime处理时间小结
Apr 16 Python
Pytorch mask-rcnn 实现细节分享
Jun 24 Python
python中如何使用虚拟环境
Oct 14 Python
Python中过滤字符串列表的方法
Dec 22 Python
pytorch查看网络参数显存占用量等操作
May 12 Python
python里的单引号和双引号的有什么作用
Jun 17 #Python
没编程基础可以学python吗
Jun 17 #Python
keras实现图像预处理并生成一个generator的案例
Jun 17 #Python
pytorch快速搭建神经网络_Sequential操作
Jun 17 #Python
浅谈Keras的Sequential与PyTorch的Sequential的区别
Jun 17 #Python
Keras之fit_generator与train_on_batch用法
Jun 17 #Python
基于Keras的格式化输出Loss实现方式
Jun 17 #Python
You might like
使用sockets:从新闻组中获取文章(一)
2006/10/09 PHP
php下统计用户在线时间的一种尝试
2010/08/26 PHP
Uncaught exception com_exception with message Failed to create COM object
2012/01/11 PHP
PHP中使用localhost连接Mysql不成功的解决方法
2014/08/20 PHP
PHP实现的简单日历类
2014/11/29 PHP
整理Javascript数组学习笔记
2015/11/29 Javascript
js+canvas绘制矩形的方法
2016/01/28 Javascript
JavaScript模拟push
2016/03/06 Javascript
jquery简单插件制作(fn.extend)完整实例
2016/05/24 Javascript
Mongoose学习全面理解(推荐)
2017/01/21 Javascript
基于JavaScript实现全选、不选和反选效果
2017/02/15 Javascript
Express系列之multer上传的使用
2017/10/27 Javascript
vue debug 二种方法
2018/09/16 Javascript
解决vue-cli项目开发运行时内存暴涨卡死电脑问题
2019/10/29 Javascript
jquery实现聊天机器人
2020/02/08 jQuery
vue-amap根据地址回显地图并mark的操作
2020/11/03 Javascript
实例讲解python函数式编程
2014/06/09 Python
Python使用urllib2模块实现断点续传下载的方法
2015/06/17 Python
对Python通过pypyodbc访问Access数据库的方法详解
2018/10/27 Python
详解Python中pandas的安装操作说明(傻瓜版)
2019/04/08 Python
django将网络中的图片,保存成model中的ImageField的实例
2019/08/07 Python
python机器学习实现决策树
2019/11/11 Python
python实现快递价格查询系统
2020/03/03 Python
Python多线程的退出控制实现
2020/08/10 Python
python字典通过值反查键的实现(简洁写法)
2020/09/30 Python
python实现数据结构中双向循环链表操作的示例
2020/10/09 Python
HTML5之SVG 2D入门13—svg对决canvas及长处和适用场景分析
2013/01/30 HTML / CSS
比利时网上药店: Drogisterij.net
2017/03/17 全球购物
DJI美国:消费类无人机领域的领导者
2018/04/27 全球购物
四年的个人工作自我评价
2013/12/10 职场文书
青年文明号申报材料
2014/12/23 职场文书
项目战略合作意向书
2015/05/08 职场文书
甲午大海战观后感
2015/06/02 职场文书
2015年公司中秋节致辞
2015/07/31 职场文书
六一儿童节致辞稿(3篇)
2019/07/11 职场文书
母婴行业实体、电商模式全面解析
2019/08/01 职场文书