Posted in Python onApril 28, 2020
问题1:
程序,如下
from sympy import * f = symbols('f', cls=Function) x = symbols('x') eq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x)) print(dsolve(eq, f(x)))
结果
Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)
1.利用python的Sympy库求解微分方程的解
程序,如下
from sympy import * f = symbols('f', cls=Function) x = symbols('x') eq = Eq(f(x).diff(x,1)+f(x)+f(x)**2, 0) print(dsolve(eq, f(x))) C1 = symbols('C1') eqr = -C1/(C1 - exp(x)) eqr1 = eqr.subs(x, 0) print(solveset(eqr1 - 1, C1)) eqr2 = eqr.subs(C1, 1/2) # 画图 import matplotlib.pyplot as plt import numpy as np x_1 = np.arange(-5, 5, 0.1) y_1 = [-0.5/(0.5 - exp(x)) for x in x_1] plt.plot(x_1, y_1) plt.axis([-6,6,-10,10]) plt.grid() plt.show()
结果
Eq(f(x), -C1/(C1 - exp(x)))
FiniteSet(1/2)
2.利用python的Sympy库求解微分方程的解
程序,如下
from sympy import * y = symbols('y', cls=Function) x = symbols('x') eq = Eq(y(x).diff(x,1), y(x)) print(dsolve(eq, y(x))) C1 = symbols('C1') eqr = C1*exp(x) eqr1 = eqr.subs(x, 0) print(solveset(eqr1 - 1, C1)) eqr2 = eqr.subs(C1, 1) # 画图 import matplotlib.pyplot as plt import numpy as np x_1 = np.arange(-5, 5, 0.01) y_1 = [exp(x) for x in x_1] plt.plot(x_1, y_1, color='orange') plt.grid() plt.show()
结果
Eq(y(x), C1*exp(x))
FiniteSet(1)
到此这篇关于python中sympy库求常微分方程的用法的文章就介绍到这了,更多相关python sympy常微分方程内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!
python中sympy库求常微分方程的用法
- Author -
t4ngw声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@