Keras使用ImageNet上预训练的模型方式


Posted in Python onMay 23, 2020

我就废话不多说了,大家还是直接看代码吧!

import keras
import numpy as np
from keras.applications import vgg16, inception_v3, resnet50, mobilenet
 
#Load the VGG model
vgg_model = vgg16.VGG16(weights='imagenet')
 
#Load the Inception_V3 model
inception_model = inception_v3.InceptionV3(weights='imagenet')
 
#Load the ResNet50 model
resnet_model = resnet50.ResNet50(weights='imagenet')
 
#Load the MobileNet model
mobilenet_model = mobilenet.MobileNet(weights='imagenet')

在以上代码中,我们首先import各种模型对应的module,然后load模型,并用ImageNet的参数初始化模型的参数。

如果不想使用ImageNet上预训练到的权重初始话模型,可以将各语句的中'imagenet'替换为'None'。

补充知识:keras上使用alexnet模型来高准确度对mnist数据进行分类

纲要

本文有两个特点:一是直接对本地mnist数据进行读取(假设事先已经下载或从别处拷来)二是基于keras框架(网上多是基于tf)使用alexnet对mnist数据进行分类,并获得较高准确度(约为98%)

本地数据读取和分析

很多代码都是一开始简单调用一行代码来从网站上下载mnist数据,虽然只有10来MB,但是现在下载速度非常慢,而且经常中途出错,要费很大的劲才能拿到数据。

(X_train, y_train), (X_test, y_test) = mnist.load_data()

其实可以单独来获得这些数据(一共4个gz包,如下所示),然后调用别的接口来分析它们。

Keras使用ImageNet上预训练的模型方式

mnist = input_data.read_data_sets("./MNIST_data", one_hot = True) #导入已经下载好的数据集,"./MNIST_data"为存放mnist数据的目录

x_train = mnist.train.images
y_train = mnist.train.labels
x_test = mnist.test.images
y_test = mnist.test.labels

这里面要注意的是,两种接口拿到的数据形式是不一样的。 从网上直接下载下来的数据 其image data值的范围是0~255,且label值为0,1,2,3...9。 而第二种接口获取的数据 image值已经除以255(归一化)变成0~1范围,且label值已经是one-hot形式(one_hot=True时),比如label值2的one-hot code为(0 0 1 0 0 0 0 0 0 0)

所以,以第一种方式获取的数据需要做一些预处理(归一和one-hot)才能输入网络模型进行训练 而第二种接口拿到的数据则可以直接进行训练。

Alexnet模型的微调

按照公开的模型框架,Alexnet只有第1、2个卷积层才跟着BatchNormalization,后面三个CNN都没有(如有说错,请指正)。如果按照这个来搭建网络模型,很容易导致梯度消失,现象就是 accuracy值一直处在很低的值。 如下所示。

Keras使用ImageNet上预训练的模型方式

在每个卷积层后面都加上BN后,准确度才迭代提高。如下所示

Keras使用ImageNet上预训练的模型方式

完整代码

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras.callbacks import ModelCheckpoint
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #tensorflow已经包含了mnist案例的数据
 
batch_size = 64
num_classes = 10
epochs = 10
img_shape = (28,28,1)
 
# input dimensions
img_rows, img_cols = 28,28
 
# dataset input
#(x_train, y_train), (x_test, y_test) = mnist.load_data()
mnist = input_data.read_data_sets("./MNIST_data", one_hot = True) #导入已经下载好的数据集,"./MNIST_data"为存放mnist数据的目录
print(mnist.train.images.shape, mnist.train.labels.shape)
print(mnist.test.images.shape, mnist.test.labels.shape)
print(mnist.validation.images.shape, mnist.validation.labels.shape)
 
x_train = mnist.train.images
y_train = mnist.train.labels
x_test = mnist.test.images
y_test = mnist.test.labels
 
# data initialization
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
 
# Define the input layer
inputs = keras.Input(shape = [img_rows, img_cols, 1])
 
 #Define the converlutional layer 1
conv1 = keras.layers.Conv2D(filters= 64, kernel_size= [11, 11], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(inputs)
# Define the pooling layer 1
pooling1 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv1)
# Define the standardization layer 1
stand1 = keras.layers.BatchNormalization(axis= 1)(pooling1)
 
# Define the converlutional layer 2
conv2 = keras.layers.Conv2D(filters= 192, kernel_size= [5, 5], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand1)
# Defien the pooling layer 2
pooling2 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv2)
# Define the standardization layer 2
stand2 = keras.layers.BatchNormalization(axis= 1)(pooling2)
 
# Define the converlutional layer 3
conv3 = keras.layers.Conv2D(filters= 384, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand2)
stand3 = keras.layers.BatchNormalization(axis=1)(conv3)
 
# Define the converlutional layer 4
conv4 = keras.layers.Conv2D(filters= 384, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand3)
stand4 = keras.layers.BatchNormalization(axis=1)(conv4)
 
# Define the converlutional layer 5
conv5 = keras.layers.Conv2D(filters= 256, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand4)
pooling5 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv5)
stand5 = keras.layers.BatchNormalization(axis=1)(pooling5)
 
# Define the fully connected layer
flatten = keras.layers.Flatten()(stand5)
fc1 = keras.layers.Dense(4096, activation= keras.activations.relu, use_bias= True)(flatten)
drop1 = keras.layers.Dropout(0.5)(fc1)
 
fc2 = keras.layers.Dense(4096, activation= keras.activations.relu, use_bias= True)(drop1)
drop2 = keras.layers.Dropout(0.5)(fc2)
 
fc3 = keras.layers.Dense(10, activation= keras.activations.softmax, use_bias= True)(drop2)
 
# 基于Model方法构建模型
model = keras.Model(inputs= inputs, outputs = fc3)
# 编译模型
model.compile(optimizer= tf.train.AdamOptimizer(0.001),
       loss= keras.losses.categorical_crossentropy,
       metrics= ['accuracy'])
# 训练配置,仅供参考
model.fit(x_train, y_train, batch_size= batch_size, epochs= epochs, validation_data=(x_test,y_test))

以上这篇Keras使用ImageNet上预训练的模型方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python连接mysql实例分享
Oct 09 Python
python实现Decorator模式实例代码
Feb 09 Python
Python中反射和描述器总结
Sep 23 Python
深入浅析python3中的unicode和bytes问题
Jul 03 Python
docker django无法访问redis容器的解决方法
Aug 21 Python
Python + Requests + Unittest接口自动化测试实例分析
Dec 12 Python
python_mask_array的用法
Feb 18 Python
python实现输入三角形边长自动作图求面积案例
Apr 12 Python
PyTorch 导数应用的使用教程
Aug 31 Python
Python爬虫获取op.gg英雄联盟英雄对位胜率的源码
Jan 29 Python
详解pytorch创建tensor函数
Mar 22 Python
python中mongodb包操作数据库
Apr 19 Python
使用Keras预训练模型ResNet50进行图像分类方式
May 23 #Python
基于Python中random.sample()的替代方案
May 23 #Python
keras 自定义loss损失函数,sample在loss上的加权和metric详解
May 23 #Python
keras中模型训练class_weight,sample_weight区别说明
May 23 #Python
浅谈keras中的Merge层(实现层的相加、相减、相乘实例)
May 23 #Python
Keras实现将两个模型连接到一起
May 23 #Python
keras 获取某层输出 获取复用层的多次输出实例
May 23 #Python
You might like
PHP设计模式之简单工厂和工厂模式实例分析
2019/03/25 PHP
PHP PDO和消息队列的个人理解与应用实例分析
2019/11/25 PHP
Prototype Hash对象 学习
2009/07/19 Javascript
javascript options属性集合操作代码
2009/12/28 Javascript
js关闭浏览器窗口及检查浏览器关闭事件
2013/09/03 Javascript
一个仿糯米弹框效果demo
2014/07/22 Javascript
jQuery trigger()方法用法介绍
2015/01/13 Javascript
EasyUI实现二级页面的内容勾选的方法
2015/03/01 Javascript
浅谈Javascript的静态属性和原型属性
2015/05/07 Javascript
jQuery实现div随意拖动的实例代码(通用代码)
2016/01/28 Javascript
javascirpt实现2个iframe之间传值的方法
2016/06/30 Javascript
利用jQuery插件imgAreaSelect实现获得选择域的图像信息
2016/12/02 Javascript
jQuery纵向导航菜单效果实现方法
2016/12/19 Javascript
Bootstrap框架安装使用详解
2017/01/21 Javascript
微信小程序 连续旋转动画(this.animation.rotate)详解
2017/04/07 Javascript
JS模拟实现哈希表及应用详解
2018/05/04 Javascript
JavaScript代码模拟鼠标自动点击事件示例
2020/08/07 Javascript
vue 修改 data 数据问题并实时显示操作
2020/09/07 Javascript
Openlayers3实现车辆轨迹回放功能
2020/09/29 Javascript
原生js中运算符及流程控制示例详解
2021/01/05 Javascript
python实现键盘控制鼠标移动
2020/11/27 Python
Tensorflow 自定义loss的情况下初始化部分变量方式
2020/01/06 Python
Python操作word文档插入图片和表格的实例演示
2020/10/25 Python
css3实现简单的白云飘动背景特效
2020/10/28 HTML / CSS
HTML5 canvas基本绘图之绘制线段
2016/06/27 HTML / CSS
草莓网官网:StrawberryNET
2019/08/21 全球购物
高三自我鉴定怎么写
2013/10/19 职场文书
公务员更新知识培训实施方案
2014/03/31 职场文书
怎样填写就业意向
2014/04/02 职场文书
环保口号大全
2014/06/12 职场文书
总经理助理岗位职责范本
2015/03/31 职场文书
年会主持人开场白台词
2015/05/29 职场文书
网络研修随笔感言
2015/11/18 职场文书
2016年幼儿园教师政治学习心得体会
2016/01/23 职场文书
python cv2图像质量压缩的算法示例
2021/06/04 Python
Python如何利用pandas读取csv数据并绘图
2022/07/07 Python