使用Keras预训练模型ResNet50进行图像分类方式


Posted in Python onMay 23, 2020

Keras提供了一些用ImageNet训练过的模型:Xception,VGG16,VGG19,ResNet50,InceptionV3。在使用这些模型的时候,有一个参数include_top表示是否包含模型顶部的全连接层,如果包含,则可以将图像分为ImageNet中的1000类,如果不包含,则可以利用这些参数来做一些定制的事情。

在运行时自动下载有可能会失败,需要去网站中手动下载,放在“~/.keras/models/”中,使用WinPython则在“settings/.keras/models/”中。

修正:表示当前是训练模式还是测试模式的参数K.learning_phase()文中表述和使用有误,在该函数说明中可以看到:

The learning phase flag is a bool tensor (0 = test, 1 = train),所以0是测试模式,1是训练模式,部分网络结构下两者有差别。

这里使用ResNet50预训练模型,对Caltech101数据集进行图像分类。只有CPU,运行较慢,但是在训练集固定的情况下,较慢的过程只需要运行一次。

该预训练模型的中文文档介绍在http://keras-cn.readthedocs.io/en/latest/other/application/#resnet50。

我使用的版本:

1.Ubuntu 16.04.3

2.Python 2.7

3.Keras 2.0.8

4.Tensoflow 1.3.0

5.Numpy 1.13.1

6.python-opencv 2.4.9.1+dfsg-1.5ubuntu1

7.h5py 2.7.0

从文件夹中提取图像数据的方式:

函数:

def eachFile(filepath):     #将目录内的文件名放入列表中
 pathDir = os.listdir(filepath)
 out = []
 for allDir in pathDir:
  child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
  out.append(child)
 return out
 
def get_data(data_name,train_left=0.0,train_right=0.7,train_all=0.7,resize=True,data_format=None,t=''): #从文件夹中获取图像数据
 file_name = os.path.join(pic_dir_out,data_name+t+'_'+str(train_left)+'_'+str(train_right)+'_'+str(Width)+"X"+str(Height)+".h5") 
 print file_name
 if os.path.exists(file_name):   #判断之前是否有存到文件中
  f = h5py.File(file_name,'r')
  if t=='train':
   X_train = f['X_train'][:]
   y_train = f['y_train'][:]
   f.close()
   return (X_train, y_train)
  elif t=='test':
   X_test = f['X_test'][:]
   y_test = f['y_test'][:]
   f.close()
   return (X_test, y_test) 
  else:
   return 
 data_format = conv_utils.normalize_data_format(data_format)
 pic_dir_set = eachFile(pic_dir_data)
 X_train = []
 y_train = []
 X_test = []
 y_test = []
 label = 0
 for pic_dir in pic_dir_set:
  print pic_dir_data+pic_dir
  if not os.path.isdir(os.path.join(pic_dir_data,pic_dir)):
   continue 
  pic_set = eachFile(os.path.join(pic_dir_data,pic_dir))
  pic_index = 0
  train_count = int(len(pic_set)*train_all)
  train_l = int(len(pic_set)*train_left)
  train_r = int(len(pic_set)*train_right)
  for pic_name in pic_set:
   if not os.path.isfile(os.path.join(pic_dir_data,pic_dir,pic_name)):
    continue  
   img = cv2.imread(os.path.join(pic_dir_data,pic_dir,pic_name))
   if img is None:
    continue
   if (resize):
    img = cv2.resize(img,(Width,Height)) 
    img = img.reshape(-1,Width,Height,3)
   if (pic_index < train_count):
    if t=='train':
     if (pic_index >= train_l and pic_index < train_r):
      X_train.append(img)
      y_train.append(label) 
   else:
    if t=='test':
     X_test.append(img)
     y_test.append(label)
   pic_index += 1
  if len(pic_set) <> 0:  
   label += 1
 
 f = h5py.File(file_name,'w') 
 if t=='train':
  X_train = np.concatenate(X_train,axis=0)  
  y_train = np.array(y_train)  
  f.create_dataset('X_train', data = X_train)
  f.create_dataset('y_train', data = y_train)
  f.close()
  return (X_train, y_train)
 elif t=='test':
  X_test = np.concatenate(X_test,axis=0) 
  y_test = np.array(y_test)
  f.create_dataset('X_test', data = X_test)
  f.create_dataset('y_test', data = y_test)
  f.close()
  return (X_test, y_test) 
 else:
  return

调用:

global Width, Height, pic_dir_out, pic_dir_data
 Width = 224
 Height = 224
 num_classes = 102    #Caltech101为102 cifar10为10
 pic_dir_out = '/home/ccuux3/pic_cnn/pic_out/' 
 pic_dir_data = '/home/ccuux3/pic_cnn/pic_dataset/Caltech101/'
 sub_dir = '224_resnet50/'
 if not os.path.isdir(os.path.join(pic_dir_out,sub_dir)):
  os.mkdir(os.path.join(pic_dir_out,sub_dir))
 pic_dir_mine = os.path.join(pic_dir_out,sub_dir)
 (X_train, y_train) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='train')
 y_train = np_utils.to_categorical(y_train, num_classes)

载入预训练模型ResNet50,并将训练图像经过网络运算得到数据,不包含顶部的全连接层,得到的结果存成文件,以后可以直接调用(由于我内存不够,所以拆分了一下):

input_tensor = Input(shape=(224, 224, 3))
 base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights='imagenet')
 #base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights=None)
 get_resnet50_output = K.function([base_model.layers[0].input, K.learning_phase()],
        [base_model.layers[-1].output])
 
 file_name = os.path.join(pic_dir_mine,'resnet50_train_output'+'.h5')
 if os.path.exists(file_name):
  f = h5py.File(file_name,'r')
  resnet50_train_output = f['resnet50_train_output'][:]
  f.close()
 else:
  resnet50_train_output = []
  delta = 10
  for i in range(0,len(X_train),delta):
   print i
   one_resnet50_train_output = get_resnet50_output([X_train[i:i+delta], 0])[0]
   resnet50_train_output.append(one_resnet50_train_output)
  resnet50_train_output = np.concatenate(resnet50_train_output,axis=0) 
  f = h5py.File(file_name,'w')   
  f.create_dataset('resnet50_train_output', data = resnet50_train_output)
  f.close()

将ResNet50网络产生的结果用于图像分类:

input_tensor = Input(shape=(1, 1, 2048))
 x = Flatten()(input_tensor)
 x = Dense(1024, activation='relu')(x)
 predictions = Dense(num_classes, activation='softmax')(x) 
 model = Model(inputs=input_tensor, outputs=predictions)
 model.compile(optimizer=Adam(), loss='categorical_crossentropy',metrics=['accuracy'])

训练图像数据集:

print('\nTraining ------------') #从文件中提取参数,训练后存在新的文件中
 cm = 0        #修改这个参数可以多次训练
 cm_str = '' if cm==0 else str(cm)
 cm2_str = '' if (cm+1)==0 else str(cm+1) 
 if cm >= 1:
  model.load_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_'+cm_str+'.h5'))
 model.fit(resnet50_train_output, y_train, epochs=10, batch_size=128,) 
 model.save_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_'+cm2_str+'.h5'))

测试图像数据集:

(X_test, y_test) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='test') 
 y_test = np_utils.to_categorical(y_test, num_classes)
  
 file_name = os.path.join(pic_dir_mine,'resnet50_test_output'+'.h5')
 if os.path.exists(file_name):
  f = h5py.File(file_name,'r')
  resnet50_test_output = f['resnet50_test_output'][:]
  f.close()
 else:
  resnet50_test_output = []
  delta = 10
  for i in range(0,len(X_test),delta):
   print i
   one_resnet50_test_output = get_resnet50_output([X_test[i:i+delta], 0])[0]
   resnet50_test_output.append(one_resnet50_test_output)
  resnet50_test_output = np.concatenate(resnet50_test_output,axis=0)
  f = h5py.File(file_name,'w')   
  f.create_dataset('resnet50_test_output', data = resnet50_test_output)
  f.close()
 print('\nTesting ------------')  #对测试集进行评估
 class_name_list = get_name_list(pic_dir_data) #获取top-N的每类的准确率
 pred = model.predict(resnet50_test_output, batch_size=32)

输出测试集各类别top-5的准确率:

N = 5
 pred_list = []
 for row in pred:
  pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
 pred_array = np.array(pred_list)
 test_arg = np.argmax(y_test,axis=1)
 class_count = [0 for _ in xrange(num_classes)]
 class_acc = [0 for _ in xrange(num_classes)]
 for i in xrange(len(test_arg)):
  class_count[test_arg[i]] += 1
  if test_arg[i] in pred_array[i]:
   class_acc[test_arg[i]] += 1
 print('top-'+str(N)+' all acc:',str(sum(class_acc))+'/'+str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
 for i in xrange(num_classes):
  print (i, class_name_list[i], 'acc: '+str(class_acc[i])+'/'+str(class_count[i]))

完整代码:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import h5py
import os
 
from keras.utils import np_utils, conv_utils
from keras.models import Model
from keras.layers import Flatten, Dense, Input 
from keras.optimizers import Adam
from keras.applications.resnet50 import ResNet50
from keras import backend as K
 
def get_name_list(filepath):    #获取各个类别的名字
 pathDir = os.listdir(filepath)
 out = []
 for allDir in pathDir:
  if os.path.isdir(os.path.join(filepath,allDir)):
   child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
   out.append(child)
 return out
 
def eachFile(filepath):     #将目录内的文件名放入列表中
 pathDir = os.listdir(filepath)
 out = []
 for allDir in pathDir:
  child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
  out.append(child)
 return out
 
def get_data(data_name,train_left=0.0,train_right=0.7,train_all=0.7,resize=True,data_format=None,t=''): #从文件夹中获取图像数据
 file_name = os.path.join(pic_dir_out,data_name+t+'_'+str(train_left)+'_'+str(train_right)+'_'+str(Width)+"X"+str(Height)+".h5") 
 print file_name
 if os.path.exists(file_name):   #判断之前是否有存到文件中
  f = h5py.File(file_name,'r')
  if t=='train':
   X_train = f['X_train'][:]
   y_train = f['y_train'][:]
   f.close()
   return (X_train, y_train)
  elif t=='test':
   X_test = f['X_test'][:]
   y_test = f['y_test'][:]
   f.close()
   return (X_test, y_test) 
  else:
   return 
 data_format = conv_utils.normalize_data_format(data_format)
 pic_dir_set = eachFile(pic_dir_data)
 X_train = []
 y_train = []
 X_test = []
 y_test = []
 label = 0
 for pic_dir in pic_dir_set:
  print pic_dir_data+pic_dir
  if not os.path.isdir(os.path.join(pic_dir_data,pic_dir)):
   continue 
  pic_set = eachFile(os.path.join(pic_dir_data,pic_dir))
  pic_index = 0
  train_count = int(len(pic_set)*train_all)
  train_l = int(len(pic_set)*train_left)
  train_r = int(len(pic_set)*train_right)
  for pic_name in pic_set:
   if not os.path.isfile(os.path.join(pic_dir_data,pic_dir,pic_name)):
    continue  
   img = cv2.imread(os.path.join(pic_dir_data,pic_dir,pic_name))
   if img is None:
    continue
   if (resize):
    img = cv2.resize(img,(Width,Height)) 
    img = img.reshape(-1,Width,Height,3)
   if (pic_index < train_count):
    if t=='train':
     if (pic_index >= train_l and pic_index < train_r):
      X_train.append(img)
      y_train.append(label) 
   else:
    if t=='test':
     X_test.append(img)
     y_test.append(label)
   pic_index += 1
  if len(pic_set) <> 0:  
   label += 1
 
 f = h5py.File(file_name,'w') 
 if t=='train':
  X_train = np.concatenate(X_train,axis=0)  
  y_train = np.array(y_train)  
  f.create_dataset('X_train', data = X_train)
  f.create_dataset('y_train', data = y_train)
  f.close()
  return (X_train, y_train)
 elif t=='test':
  X_test = np.concatenate(X_test,axis=0) 
  y_test = np.array(y_test)
  f.create_dataset('X_test', data = X_test)
  f.create_dataset('y_test', data = y_test)
  f.close()
  return (X_test, y_test) 
 else:
  return
 
def main():
 global Width, Height, pic_dir_out, pic_dir_data
 Width = 224
 Height = 224
 num_classes = 102    #Caltech101为102 cifar10为10
 pic_dir_out = '/home/ccuux3/pic_cnn/pic_out/' 
 pic_dir_data = '/home/ccuux3/pic_cnn/pic_dataset/Caltech101/'
 sub_dir = '224_resnet50/'
 if not os.path.isdir(os.path.join(pic_dir_out,sub_dir)):
  os.mkdir(os.path.join(pic_dir_out,sub_dir))
 pic_dir_mine = os.path.join(pic_dir_out,sub_dir)
 (X_train, y_train) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='train')
 y_train = np_utils.to_categorical(y_train, num_classes)
 
 input_tensor = Input(shape=(224, 224, 3))
 base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights='imagenet')
 #base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights=None)
 get_resnet50_output = K.function([base_model.layers[0].input, K.learning_phase()],
        [base_model.layers[-1].output])
 
 file_name = os.path.join(pic_dir_mine,'resnet50_train_output'+'.h5')
 if os.path.exists(file_name):
  f = h5py.File(file_name,'r')
  resnet50_train_output = f['resnet50_train_output'][:]
  f.close()
 else:
  resnet50_train_output = []
  delta = 10
  for i in range(0,len(X_train),delta):
   print i
   one_resnet50_train_output = get_resnet50_output([X_train[i:i+delta], 0])[0]
   resnet50_train_output.append(one_resnet50_train_output)
  resnet50_train_output = np.concatenate(resnet50_train_output,axis=0) 
  f = h5py.File(file_name,'w')   
  f.create_dataset('resnet50_train_output', data = resnet50_train_output)
  f.close()
 
 input_tensor = Input(shape=(1, 1, 2048))
 x = Flatten()(input_tensor)
 x = Dense(1024, activation='relu')(x)
 predictions = Dense(num_classes, activation='softmax')(x) 
 model = Model(inputs=input_tensor, outputs=predictions)
 model.compile(optimizer=Adam(), loss='categorical_crossentropy',metrics=['accuracy'])
 
 print('\nTraining ------------') #从文件中提取参数,训练后存在新的文件中
 cm = 0        #修改这个参数可以多次训练
 cm_str = '' if cm==0 else str(cm)
 cm2_str = '' if (cm+1)==0 else str(cm+1) 
 if cm >= 1:
  model.load_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_'+cm_str+'.h5'))
 model.fit(resnet50_train_output, y_train, epochs=10, batch_size=128,) 
 model.save_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_'+cm2_str+'.h5'))
 
 (X_test, y_test) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='test') 
 y_test = np_utils.to_categorical(y_test, num_classes)
  
 file_name = os.path.join(pic_dir_mine,'resnet50_test_output'+'.h5')
 if os.path.exists(file_name):
  f = h5py.File(file_name,'r')
  resnet50_test_output = f['resnet50_test_output'][:]
  f.close()
 else:
  resnet50_test_output = []
  delta = 10
  for i in range(0,len(X_test),delta):
   print i
   one_resnet50_test_output = get_resnet50_output([X_test[i:i+delta], 0])[0]
   resnet50_test_output.append(one_resnet50_test_output)
  resnet50_test_output = np.concatenate(resnet50_test_output,axis=0)
  f = h5py.File(file_name,'w')   
  f.create_dataset('resnet50_test_output', data = resnet50_test_output)
  f.close()
 print('\nTesting ------------')  #对测试集进行评估
 class_name_list = get_name_list(pic_dir_data) #获取top-N的每类的准确率
 pred = model.predict(resnet50_test_output, batch_size=32)
 f = h5py.File(os.path.join(pic_dir_mine,'pred_'+cm2_str+'.h5'),'w')   
 f.create_dataset('pred', data = pred)
 f.close()
 
 N = 1
 pred_list = []
 for row in pred:
  pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
 pred_array = np.array(pred_list)
 test_arg = np.argmax(y_test,axis=1)
 class_count = [0 for _ in xrange(num_classes)]
 class_acc = [0 for _ in xrange(num_classes)]
 for i in xrange(len(test_arg)):
  class_count[test_arg[i]] += 1
  if test_arg[i] in pred_array[i]:
   class_acc[test_arg[i]] += 1
 print('top-'+str(N)+' all acc:',str(sum(class_acc))+'/'+str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
 for i in xrange(num_classes):
  print (i, class_name_list[i], 'acc: '+str(class_acc[i])+'/'+str(class_count[i]))
 
 print('----------------------------------------------------')
 N = 5
 pred_list = []
 for row in pred:
  pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
 pred_array = np.array(pred_list)
 test_arg = np.argmax(y_test,axis=1)
 class_count = [0 for _ in xrange(num_classes)]
 class_acc = [0 for _ in xrange(num_classes)]
 for i in xrange(len(test_arg)):
  class_count[test_arg[i]] += 1
  if test_arg[i] in pred_array[i]:
   class_acc[test_arg[i]] += 1
 print('top-'+str(N)+' all acc:',str(sum(class_acc))+'/'+str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
 for i in xrange(num_classes):
  print (i, class_name_list[i], 'acc: '+str(class_acc[i])+'/'+str(class_count[i]))
  
if __name__ == '__main__':
 main()

运行结果:

Using TensorFlow backend.
/home/ccuux3/pic_cnn/pic_out/Caltech101_color_data_train_0.0_0.7_224X224.h5

Training ------------
Epoch 1/10
6353/6353 [==============================] - 5s - loss: 1.1269 - acc: 0.7494  
Epoch 2/10
6353/6353 [==============================] - 4s - loss: 0.1603 - acc: 0.9536  
Epoch 3/10
6353/6353 [==============================] - 4s - loss: 0.0580 - acc: 0.9855  
Epoch 4/10
6353/6353 [==============================] - 4s - loss: 0.0312 - acc: 0.9931  
Epoch 5/10
6353/6353 [==============================] - 4s - loss: 0.0182 - acc: 0.9956  
Epoch 6/10
6353/6353 [==============================] - 4s - loss: 0.0111 - acc: 0.9976  
Epoch 7/10
6353/6353 [==============================] - 4s - loss: 0.0090 - acc: 0.9981  
Epoch 8/10
6353/6353 [==============================] - 4s - loss: 0.0082 - acc: 0.9987  
Epoch 9/10
6353/6353 [==============================] - 4s - loss: 0.0069 - acc: 0.9994  
Epoch 10/10
6353/6353 [==============================] - 4s - loss: 0.0087 - acc: 0.9987  
/home/ccuux3/pic_cnn/pic_out/Caltech101_color_data_test_0.0_0.7_224X224.h5

Testing ------------
('top-1 all acc:', '2597/2792', 0.9301575931232091)
(0, u'62.mayfly', 'acc: 10/12')
(1, u'66.Motorbikes', 'acc: 240/240')
(2, u'68.octopus', 'acc: 7/11')
(3, u'94.umbrella', 'acc: 21/23')
(4, u'90.strawberry', 'acc: 10/11')
(5, u'86.stapler', 'acc: 13/14')
(6, u'83.sea_horse', 'acc: 15/18')
(7, u'72.pigeon', 'acc: 13/14')
(8, u'89.stop_sign', 'acc: 19/20')
(9, u'4.BACKGROUND_Google', 'acc: 125/141')
(10, u'22.cougar_face', 'acc: 18/21')
(11, u'81.scissors', 'acc: 9/12')
(12, u'100.wrench', 'acc: 8/12')
(13, u'57.Leopards', 'acc: 60/60')
(14, u'46.hawksbill', 'acc: 29/30')
(15, u'30.dolphin', 'acc: 19/20')
(16, u'9.bonsai', 'acc: 39/39')
(17, u'35.euphonium', 'acc: 18/20')
(18, u'44.gramophone', 'acc: 16/16')
(19, u'74.platypus', 'acc: 7/11')
(20, u'14.camera', 'acc: 15/15')
(21, u'55.lamp', 'acc: 15/19')
(22, u'38.Faces_easy', 'acc: 129/131')
(23, u'54.ketch', 'acc: 28/35')
(24, u'33.elephant', 'acc: 18/20')
(25, u'3.ant', 'acc: 8/13')
(26, u'49.helicopter', 'acc: 26/27')
(27, u'36.ewer', 'acc: 26/26')
(28, u'78.rooster', 'acc: 14/15')
(29, u'70.pagoda', 'acc: 15/15')
(30, u'58.llama', 'acc: 20/24')
(31, u'5.barrel', 'acc: 15/15')
(32, u'101.yin_yang', 'acc: 18/18')
(33, u'18.cellphone', 'acc: 18/18')
(34, u'59.lobster', 'acc: 7/13')
(35, u'17.ceiling_fan', 'acc: 14/15')
(36, u'16.car_side', 'acc: 37/37')
(37, u'50.ibis', 'acc: 24/24')
(38, u'76.revolver', 'acc: 23/25')
(39, u'84.snoopy', 'acc: 7/11')
(40, u'87.starfish', 'acc: 26/26')
(41, u'12.buddha', 'acc: 24/26')
(42, u'52.joshua_tree', 'acc: 20/20')
(43, u'43.gerenuk', 'acc: 10/11')
(44, u'65.minaret', 'acc: 23/23')
(45, u'91.sunflower', 'acc: 26/26')
(46, u'56.laptop', 'acc: 24/25')
(47, u'77.rhino', 'acc: 17/18')
(48, u'1.airplanes', 'acc: 239/240')
(49, u'88.stegosaurus', 'acc: 16/18')
(50, u'23.crab', 'acc: 17/22')
(51, u'8.binocular', 'acc: 8/10')
(52, u'31.dragonfly', 'acc: 18/21')
(53, u'6.bass', 'acc: 15/17')
(54, u'95.watch', 'acc: 72/72')
(55, u'0.accordion', 'acc: 17/17')
(56, u'98.wild_cat', 'acc: 9/11')
(57, u'67.nautilus', 'acc: 16/17')
(58, u'40.flamingo', 'acc: 20/21')
(59, u'92.tick', 'acc: 12/15')
(60, u'47.headphone', 'acc: 12/13')
(61, u'24.crayfish', 'acc: 15/21')
(62, u'97.wheelchair', 'acc: 17/18')
(63, u'27.cup', 'acc: 15/18')
(64, u'25.crocodile', 'acc: 14/15')
(65, u'2.anchor', 'acc: 7/13')
(66, u'19.chair', 'acc: 17/19')
(67, u'39.ferry', 'acc: 21/21')
(68, u'60.lotus', 'acc: 16/20')
(69, u'13.butterfly', 'acc: 26/28')
(70, u'34.emu', 'acc: 14/16')
(71, u'64.metronome', 'acc: 10/10')
(72, u'82.scorpion', 'acc: 24/26')
(73, u'7.beaver', 'acc: 12/14')
(74, u'48.hedgehog', 'acc: 16/17')
(75, u'37.Faces', 'acc: 131/131')
(76, u'45.grand_piano', 'acc: 30/30')
(77, u'79.saxophone', 'acc: 11/12')
(78, u'26.crocodile_head', 'acc: 9/16')
(79, u'80.schooner', 'acc: 15/19')
(80, u'93.trilobite', 'acc: 26/26')
(81, u'28.dalmatian', 'acc: 21/21')
(82, u'10.brain', 'acc: 28/30')
(83, u'61.mandolin', 'acc: 10/13')
(84, u'11.brontosaurus', 'acc: 11/13')
(85, u'63.menorah', 'acc: 25/27')
(86, u'85.soccer_ball', 'acc: 20/20')
(87, u'51.inline_skate', 'acc: 9/10')
(88, u'71.panda', 'acc: 11/12')
(89, u'53.kangaroo', 'acc: 24/26')
(90, u'99.windsor_chair', 'acc: 16/17')
(91, u'42.garfield', 'acc: 11/11')
(92, u'29.dollar_bill', 'acc: 16/16')
(93, u'20.chandelier', 'acc: 30/33')
(94, u'96.water_lilly', 'acc: 6/12')
(95, u'41.flamingo_head', 'acc: 13/14')
(96, u'73.pizza', 'acc: 13/16')
(97, u'21.cougar_body', 'acc: 15/15')
(98, u'75.pyramid', 'acc: 16/18')
(99, u'69.okapi', 'acc: 12/12')
(100, u'15.cannon', 'acc: 11/13')
(101, u'32.electric_guitar', 'acc: 19/23')
----------------------------------------------------
('top-5 all acc:', '2759/2792', 0.9881805157593123)
(0, u'62.mayfly', 'acc: 12/12')
(1, u'66.Motorbikes', 'acc: 240/240')
(2, u'68.octopus', 'acc: 11/11')
(3, u'94.umbrella', 'acc: 23/23')
(4, u'90.strawberry', 'acc: 11/11')
(5, u'86.stapler', 'acc: 14/14')
(6, u'83.sea_horse', 'acc: 16/18')
(7, u'72.pigeon', 'acc: 14/14')
(8, u'89.stop_sign', 'acc: 20/20')
(9, u'4.BACKGROUND_Google', 'acc: 141/141')
(10, u'22.cougar_face', 'acc: 19/21')
(11, u'81.scissors', 'acc: 11/12')
(12, u'100.wrench', 'acc: 10/12')
(13, u'57.Leopards', 'acc: 60/60')
(14, u'46.hawksbill', 'acc: 30/30')
(15, u'30.dolphin', 'acc: 20/20')
(16, u'9.bonsai', 'acc: 39/39')
(17, u'35.euphonium', 'acc: 20/20')
(18, u'44.gramophone', 'acc: 16/16')
(19, u'74.platypus', 'acc: 9/11')
(20, u'14.camera', 'acc: 15/15')
(21, u'55.lamp', 'acc: 18/19')
(22, u'38.Faces_easy', 'acc: 131/131')
(23, u'54.ketch', 'acc: 34/35')
(24, u'33.elephant', 'acc: 20/20')
(25, u'3.ant', 'acc: 10/13')
(26, u'49.helicopter', 'acc: 27/27')
(27, u'36.ewer', 'acc: 26/26')
(28, u'78.rooster', 'acc: 15/15')
(29, u'70.pagoda', 'acc: 15/15')
(30, u'58.llama', 'acc: 24/24')
(31, u'5.barrel', 'acc: 15/15')
(32, u'101.yin_yang', 'acc: 18/18')
(33, u'18.cellphone', 'acc: 18/18')
(34, u'59.lobster', 'acc: 13/13')
(35, u'17.ceiling_fan', 'acc: 14/15')
(36, u'16.car_side', 'acc: 37/37')
(37, u'50.ibis', 'acc: 24/24')
(38, u'76.revolver', 'acc: 25/25')
(39, u'84.snoopy', 'acc: 10/11')
(40, u'87.starfish', 'acc: 26/26')
(41, u'12.buddha', 'acc: 25/26')
(42, u'52.joshua_tree', 'acc: 20/20')
(43, u'43.gerenuk', 'acc: 11/11')
(44, u'65.minaret', 'acc: 23/23')
(45, u'91.sunflower', 'acc: 26/26')
(46, u'56.laptop', 'acc: 25/25')
(47, u'77.rhino', 'acc: 18/18')
(48, u'1.airplanes', 'acc: 240/240')
(49, u'88.stegosaurus', 'acc: 18/18')
(50, u'23.crab', 'acc: 22/22')
(51, u'8.binocular', 'acc: 10/10')
(52, u'31.dragonfly', 'acc: 20/21')
(53, u'6.bass', 'acc: 16/17')
(54, u'95.watch', 'acc: 72/72')
(55, u'0.accordion', 'acc: 17/17')
(56, u'98.wild_cat', 'acc: 11/11')
(57, u'67.nautilus', 'acc: 17/17')
(58, u'40.flamingo', 'acc: 21/21')
(59, u'92.tick', 'acc: 13/15')
(60, u'47.headphone', 'acc: 12/13')
(61, u'24.crayfish', 'acc: 21/21')
(62, u'97.wheelchair', 'acc: 18/18')
(63, u'27.cup', 'acc: 16/18')
(64, u'25.crocodile', 'acc: 15/15')
(65, u'2.anchor', 'acc: 12/13')
(66, u'19.chair', 'acc: 19/19')
(67, u'39.ferry', 'acc: 21/21')
(68, u'60.lotus', 'acc: 19/20')
(69, u'13.butterfly', 'acc: 27/28')
(70, u'34.emu', 'acc: 16/16')
(71, u'64.metronome', 'acc: 10/10')
(72, u'82.scorpion', 'acc: 26/26')
(73, u'7.beaver', 'acc: 14/14')
(74, u'48.hedgehog', 'acc: 17/17')
(75, u'37.Faces', 'acc: 131/131')
(76, u'45.grand_piano', 'acc: 30/30')
(77, u'79.saxophone', 'acc: 12/12')
(78, u'26.crocodile_head', 'acc: 14/16')
(79, u'80.schooner', 'acc: 19/19')
(80, u'93.trilobite', 'acc: 26/26')
(81, u'28.dalmatian', 'acc: 21/21')
(82, u'10.brain', 'acc: 30/30')
(83, u'61.mandolin', 'acc: 13/13')
(84, u'11.brontosaurus', 'acc: 13/13')
(85, u'63.menorah', 'acc: 25/27')
(86, u'85.soccer_ball', 'acc: 20/20')
(87, u'51.inline_skate', 'acc: 10/10')
(88, u'71.panda', 'acc: 12/12')
(89, u'53.kangaroo', 'acc: 26/26')
(90, u'99.windsor_chair', 'acc: 17/17')
(91, u'42.garfield', 'acc: 11/11')
(92, u'29.dollar_bill', 'acc: 16/16')
(93, u'20.chandelier', 'acc: 32/33')
(94, u'96.water_lilly', 'acc: 12/12')
(95, u'41.flamingo_head', 'acc: 14/14')
(96, u'73.pizza', 'acc: 16/16')
(97, u'21.cougar_body', 'acc: 15/15')
(98, u'75.pyramid', 'acc: 18/18')
(99, u'69.okapi', 'acc: 12/12')
(100, u'15.cannon', 'acc: 12/13')
(101, u'32.electric_guitar', 'acc: 23/23')

以上这篇使用Keras预训练模型ResNet50进行图像分类方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
sqlalchemy对象转dict的示例
Apr 22 Python
Python实现一个简单的MySQL类
Jan 07 Python
python求解水仙花数的方法
May 11 Python
在Django框架中编写Contact表单的教程
Jul 17 Python
Python实现二叉搜索树
Feb 03 Python
Python DataFrame设置/更改列表字段/元素类型的方法
Jun 09 Python
numpy下的flatten()函数用法详解
May 27 Python
对python中基于tcp协议的通信(数据传输)实例讲解
Jul 22 Python
使用pycharm在本地开发并实时同步到服务器
Aug 02 Python
Django如何使用jwt获取用户信息
Apr 21 Python
django 连接数据库出现1045错误的解决方式
May 14 Python
Python激活Anaconda环境变量的详细步骤
Jun 08 Python
基于Python中random.sample()的替代方案
May 23 #Python
keras 自定义loss损失函数,sample在loss上的加权和metric详解
May 23 #Python
keras中模型训练class_weight,sample_weight区别说明
May 23 #Python
浅谈keras中的Merge层(实现层的相加、相减、相乘实例)
May 23 #Python
Keras实现将两个模型连接到一起
May 23 #Python
keras 获取某层输出 获取复用层的多次输出实例
May 23 #Python
给keras层命名,并提取中间层输出值,保存到文档的实例
May 23 #Python
You might like
php各种编码集详解和以及在什么情况下进行使用
2011/09/11 PHP
PHP小教程之实现双向链表
2014/06/12 PHP
基于PHP的简单采集数据入库程序
2014/07/30 PHP
解决PHP curl或file_get_contents下载图片损坏或无法打开的问题
2019/10/11 PHP
JQuery 入门实例1
2009/06/25 Javascript
点击表单提交时出现jQuery没有权限的解决方法
2014/07/23 Javascript
JQuery表格拖动调整列宽效果(自己动手写的)
2014/09/01 Javascript
nodejs开发微博实例
2015/03/25 NodeJs
jQuery实现选项联动轮播效果【附实例】
2016/04/19 Javascript
javascript之Array 数组对象详解
2016/06/07 Javascript
Angular整合zTree的示例代码
2018/01/24 Javascript
Less 安装及基本用法
2018/05/05 Javascript
vue项目中使用百度地图的方法
2018/06/08 Javascript
JavaScript学习笔记之数组基本操作示例
2019/01/09 Javascript
JavaScript闭包与作用域链实例分析
2019/01/21 Javascript
jQuery操作attr、prop、val()/text()/html()、class属性
2019/05/23 jQuery
关于layui 下拉列表的change事件详解
2019/09/20 Javascript
layui.tree组件的使用以及搜索节点功能的实现
2019/09/26 Javascript
解决layui下拉框监听问题(监听不到值的变化)
2019/09/28 Javascript
vue 更改连接后台的api示例
2019/11/11 Javascript
微信小程序实现横向滚动导航栏效果
2019/12/12 Javascript
python3 模拟登录v2ex实例讲解
2017/07/13 Python
利用python将图片转换成excel文档格式
2017/12/30 Python
浅谈dataframe中更改列属性的方法
2018/07/10 Python
centos 安装Python3 及对应的pip教程详解
2019/06/28 Python
python web框架 django wsgi原理解析
2019/08/20 Python
TripAdvisor台湾:全球最大旅游网站
2018/08/26 全球购物
Nordgreen英国官网:斯堪的纳维亚设计师手表
2018/10/24 全球购物
Myprotein亚太地区:欧洲第一在线运动营养品牌
2020/12/20 全球购物
腾讯技术类校园招聘笔试试题
2014/05/06 面试题
村官工作鉴定评语
2014/01/27 职场文书
2014大学辅导员工作总结
2014/12/02 职场文书
2016年6月份红领巾广播稿
2015/12/21 职场文书
oracle通过存储过程上传list保存功能
2021/05/12 Oracle
聊一聊python常用的编程模块
2021/05/14 Python
python实现学员管理系统(面向对象版)
2022/06/05 Python