python模拟预测一下新型冠状病毒肺炎的数据


Posted in Python onFebruary 01, 2020

大家还好吗?

背景就不用多说了吧?本来我是初四上班的,现在延长到2月10日了。这是我工作以来时间最长的一个假期了。可惜哪也去不了。待在家里,没啥事,就用python模拟预测一下新冠病毒肺炎的数据吧。要声明的是本文纯属个人自娱自乐,不代表真实情况。

采用SIR模型,S代表易感者,I表示感染者,R表示恢复者。染病人群为传染源,通过一定几率把传染病传给易感人群,ta自己也有一定的几率被治愈并免疫,或死亡。易感人群一旦感染即成为新的传染源。

模型假设:

①不考虑人口出生、死亡、流动等情况,即人口数量保持常数。

②一个病人一旦与易感者接触就必然具有一定的传染力。假设 t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数s(t)成正比,比例系数为β,从而在t时刻单位时间内被所有病人传染的人数为βs(t)i(t)。

③ t 时刻,单位时间内从染病者中移出的人数与病人数量成正比,比例系数为γ,单位时间内移出者的数量为γi(t)。
模型为

python模拟预测一下新型冠状病毒肺炎的数据

其中,β为感染系数,代表易感人群与传染源接触被感染的概率。γ为隔离(恢复)系数,我们对其倒数1/γ更感兴趣,代表了平均感染时间(average infectious period)。S(0)为初始易感人数,I(0)为初始感染人数。

按照[1]里面的代码模型的感染人数是这样的

python模拟预测一下新型冠状病毒肺炎的数据

现在的问题就是利用现有的数据找到新冠肺炎的β值,γ值等数据了。先把数据拔下来吧。从[3]上扒数据,由于数据不多,就手工完成吧。保存到csv文件里。

然后把数据作图

python模拟预测一下新型冠状病毒肺炎的数据

还有一个指标是再生数R0=β/γ,大于1时人群中大部分才被感染[4]。世卫组织1月23日的估计是R0在1.4到2.5之间[5],最新的根据前425例发病数据的估计值为2.2[6]。

文章[7]中的按一般病毒性肺炎恢复期25天计算得到的γ值为0.04。

关于β值和初始易感人群,[7]的作者采用的方法是先估计一个区间,然后用最小二乘法找到最佳参数,β≈3.57*10^-5。S[0]的范围为5000-30000人。[7]文章里有matlab代码,我用python改写一下,由于对最小二乘法法的实现比较陌生,尝试了半天,最后我决定用最笨的办法——穷举法。就是用两个嵌套循环将范围内所有β值和S0值都试一遍,计算每次尝试结果与实际数据之间差值的平方和,平方和最小的一组β值和S0值用来做预测。代码如下:

γ值设定为0.04,即一般病程25天

用最小二乘法估计β值和初始易感人数

gamma = 0.04
S0 = [i for i in range(20000, 40000, 1000)]
beta = [f for f in np.arange(1e-7, 1e-4, 1e-7)]
# 定义偏差函数
def error(res):
 err = (data["感染者"] - res)**2
 errsum = sum(err)
 return errsum

# 穷举法,找出与实际数据差的平方和最小的S0和beta值
minSum = 1e10
minS0 = 0.0
minBeta = 0.0
bestRes = None

for S in S0:
 for b in beta:
  # 模型的差分方程
  def diff_eqs_2(INP, t):
   Y = np.zeros((3))
   V = INP
   Y[0] = -b * V[0] * V[1]
   Y[1] = b * V[0] * V[1] - gamma * V[1]
   Y[2] = gamma * V[1]
   return Y

  # 数值解模型方程
  INPUT = [S, I0, 0.0]
  RES = spi.odeint(diff_eqs_2, INPUT, t_range)
  errsum = error(RES[:21, 1])
  if errsum < minSum:
   minSum = errsum
   minS0 = S
   minBeta = b
   bestRes = RES
   print("S0=%d beta=%f minErr=%f" % (S, b, errsum))
print("S0 = %d β = %f" % (minS0, minBeta))

结果 S0 = 39000, β = 8e-6

上述程序耗时较长,只在探索时执行,完了就注释掉,用最优参数进行预测。

python模拟预测一下新型冠状病毒肺炎的数据
python模拟预测一下新型冠状病毒肺炎的数据

预测最大感染人数:23769 时间是在1月10日的33天后,也就是2月12日。

本文代码:https://github.com/zwdnet/2019-nCov-SIRmodel

与[7]作者讨论,我的算法是将S0与β作为独立的两个变量用两个循环嵌套分别遍历,他的做法是用每个S0的值代入微分方程算出相应的β值。他的算法应该更好一些,我正在尝试。另外在微信公众号上看到一篇更系统的关于此次疫情的数学模型的文章:https://mp.weixin.qq.com/s/rgaJtA4jioLOCHs_oCauDg

再次声明:本文只是我个人在家无聊的游戏作品,不是正儿八经的预测。我也不是流行病学专业人士。祝疫情早日结束!武汉加油!中国加油!

总结

以上所述是小编给大家介绍的python模拟预测一下新型冠状病毒肺炎的数据,希望对大家有所帮助!

Python 相关文章推荐
python使用reportlab实现图片转换成pdf的方法
May 22 Python
python获取一组汉字拼音首字母的方法
Jul 01 Python
Flask框架的学习指南之用户登录管理
Nov 20 Python
python reduce 函数使用详解
Dec 05 Python
Python语言实现百度语音识别API的使用实例
Dec 13 Python
windows10下安装TensorFlow Object Detection API的步骤
Jun 13 Python
Django 重写用户模型的实现
Jul 29 Python
python 实现识别图片上的数字
Jul 30 Python
python opencv实现证件照换底功能
Aug 19 Python
python使用if语句实现一个猜拳游戏详解
Aug 27 Python
在OpenCV里实现条码区域识别的方法示例
Dec 04 Python
python3中的logging记录日志实现过程及封装成类的操作
May 12 Python
Python warning警告出现的原因及忽略方法
Jan 31 #Python
Python 2种方法求某个范围内的所有素数(质数)
Jan 31 #Python
PyQt5中多线程模块QThread使用方法的实现
Jan 31 #Python
浅谈python之自动化运维(Paramiko)
Jan 31 #Python
为什么黑客都用python(123个黑客必备的Python工具)
Jan 31 #Python
Win10里python3创建虚拟环境的步骤
Jan 31 #Python
python判断链表是否有环的实例代码
Jan 31 #Python
You might like
基于CakePHP实现的简单博客系统实例
2015/06/28 PHP
帝国cms常用标签汇总
2015/07/06 PHP
关于PHP 如何用 curl 读取 HTTP chunked 数据
2016/02/26 PHP
深入浅析PHP的session反序列化漏洞问题
2017/06/15 PHP
PHP安全之register_globals的on和off的区别
2020/07/23 PHP
PHP操作Redis常用命令的实例详解
2020/12/23 PHP
基于jQuery的可以控制左右滚动及自动滚动效果的代码
2010/07/25 Javascript
JavaScript之编码规范 推荐
2012/05/23 Javascript
说说JSON和JSONP 也许你会豁然开朗
2012/09/02 Javascript
JS验证邮箱格式是否正确的代码
2013/12/05 Javascript
jQuery实现鼠标点击弹出渐变层的方法
2015/07/09 Javascript
详解jQuery中的empty、remove和detach
2016/04/11 Javascript
jquery 动态合并单元格的实现方法
2016/08/26 Javascript
详解vue-router基本使用
2017/04/18 Javascript
微信小程序 wx:for的使用实例详解
2017/04/27 Javascript
vue.js中toast用法及使用toast弹框的实例代码
2018/08/27 Javascript
微信小程序实现swiper切换卡内嵌滚动条不显示的方法示例
2018/12/20 Javascript
JS如何在不同平台实现多语言方式
2020/07/16 Javascript
easy_install python包安装管理工具介绍
2013/02/10 Python
python中实现定制类的特殊方法总结
2014/09/28 Python
Flask之flask-session的具体使用
2018/07/26 Python
python+opencv边缘提取与各函数参数解析
2020/03/09 Python
python爬取豆瓣电影排行榜(requests)的示例代码
2021/02/18 Python
英国最大的汽车交易网站:Auto Trader UK
2016/09/23 全球购物
英国手机零售商:Carphone Warehouse
2018/06/06 全球购物
NFL加拿大官方网上商店:NHLShop.ca
2019/03/12 全球购物
高中毕业自我评价
2014/02/08 职场文书
多媒体专业自我鉴定
2014/02/28 职场文书
企业优秀团员事迹材料
2014/08/20 职场文书
村主任个人对照检查材料
2014/10/01 职场文书
优秀团队申报材料
2014/12/26 职场文书
论文致谢词范文
2015/05/14 职场文书
停发工资证明范本
2015/06/12 职场文书
篮球赛新闻稿
2015/07/17 职场文书
趣味运动会赞词
2015/07/22 职场文书
Win Server2016远程桌面如何允许多用户同时登录
2022/06/10 Servers