Opencv求取连通区域重心实例


Posted in Python onJune 04, 2020

我们有时候需要求取某一个物体重心,这里一般将图像二值化,得出该物体的轮廓,然后根据灰度重心法,计算出每一个物体的中心。

步骤如下:

1)合适的阈值二值化

2)求取轮廓

3)计算重心

otsu算法求取最佳阈值

otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分,otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。

计算轮廓

opencv中函数findContours函数

findContours(二值化图像,轮廓,hierarchy,轮廓检索模式,轮廓近似办法,offset)

灰度重心法

利用灰度重心法计算中心,灰度重心法将区域内每一像素位置处的灰度值当做该点的“质量”,其求区域中心的公式为:

Opencv求取连通区域重心实例

其中,f(u,v)是坐标为(u,v)的像素点的灰度值, 是目标区域集合, 是区域中心坐标,灰度重心法提取的是区域的能量中心。

//otsu算法实现函数
int Otsu(Mat &image)
{
  int width = image.cols;
  int height = image.rows;
  int x = 0, y = 0;
  int pixelCount[256];
  float pixelPro[256];
  int i, j, pixelSum = width * height, threshold = 0;

  uchar* data = (uchar*)image.data;

  //初始化 
  for (i = 0; i < 256; i++)
  {
    pixelCount[i] = 0;
    pixelPro[i] = 0;
  }

  //统计灰度级中每个像素在整幅图像中的个数 
  for (i = y; i < height; i++)
  {
    for (j = x; j<width; j++)
    {
      pixelCount[data[i * image.step + j]]++;
    }
  }


  //计算每个像素在整幅图像中的比例 
  for (i = 0; i < 256; i++)
  {
    pixelPro[i] = (float)(pixelCount[i]) / (float)(pixelSum);
  }

  //经典ostu算法,得到前景和背景的分割 
  //遍历灰度级[0,255],计算出方差最大的灰度值,为最佳阈值 
  float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0;
  for (i = 0; i < 256; i++)
  {
    w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;

    for (j = 0; j < 256; j++)
    {
      if (j <= i) //背景部分 
      {
        //以i为阈值分类,第一类总的概率 
        w0 += pixelPro[j];
        u0tmp += j * pixelPro[j];
      }
      else    //前景部分 
      {
        //以i为阈值分类,第二类总的概率 
        w1 += pixelPro[j];
        u1tmp += j * pixelPro[j];
      }
    }

    u0 = u0tmp / w0;    //第一类的平均灰度 
    u1 = u1tmp / w1;    //第二类的平均灰度 
    u = u0tmp + u1tmp;   //整幅图像的平均灰度 
                //计算类间方差 
    deltaTmp = w0 * (u0 - u)*(u0 - u) + w1 * (u1 - u)*(u1 - u);
    //找出最大类间方差以及对应的阈值 
    if (deltaTmp > deltaMax)
    {
      deltaMax = deltaTmp;
      threshold = i;
    }
  }
  //返回最佳阈值; 
  return threshold;
}

int main()
{
  Mat White=imread("white.tif");//读取图像
  int threshold_white = otsu(White);//阈值计算,利用otsu
  cout << "最佳阈值:" << threshold_white << endl;
  Mat thresholded = Mat::zeros(White.size(), White.type());
  threshold(White, thresholded, threshold_white, 255, CV_THRESH_BINARY);//二值化
  vector<vector<Point>>contours;
  vector<Vec4i>hierarchy;
  findContours(thresholded, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);//查找轮廓

  int i = 0;
  int count = 0;
  Point pt[10];//假设有三个连通区域
  Moments moment;//矩
  vector<Point>Center;//创建一个向量保存重心坐标
  for (; i >= 0; i = hierarchy[i][0])//读取每一个轮廓求取重心
  {
    Mat temp(contours.at(i));
    Scalar color(0, 0, 255);
    moment = moments(temp, false);
    if (moment.m00 != 0)//除数不能为0
    {
      pt[i].x = cvRound(moment.m10 / moment.m00);//计算重心横坐标
      pt[i].y = cvRound(moment.m01 / moment.m00);//计算重心纵坐标

    }
      Point p = Point(pt[i].x, pt[i].y);//重心坐标
      circle(White, p, 1, color, 1, 8);//原图画出重心坐标
      count++;//重心点数或者是连通区域数
      Center.push_back(p);//将重心坐标保存到Center向量中
    }
  }
  cout << "重心点个数:" << Center.size() << endl;
  cout << "轮廓数量:" << contours.size() << endl;
  imwrite("Center.tif", White);
}

原图:

Opencv求取连通区域重心实例

二值化:

Opencv求取连通区域重心实例

重心点:

Opencv求取连通区域重心实例

补充知识:opencv 根据模板凸包求阈值化后的轮廓组合

图像处理中,要求特征与背景的对比度高,同时,合适的图像分割也是解决问题的关键。

博主以前的方法,默认为特征必然是最大的连通域,所以阈值化后,查找轮廓,直接提取面积最大的轮廓即可。

但可能会存在另一种情况,不论怎么阈值化和膨胀,想要的特征被分成好几块,也即断开了。此时,再加上一些不可预测的干扰和噪声,findcontours之后,会得到很多轮廓。

那么问题来了,我们需要的是哪个轮廓,或者是哪几个轮廓组合的区域?

本文的意义也在于此。

根据模板的凸包,求出图像中最相似的轮廓组合。

本方法,主要用到matchshapes函数,并基于这样一个前提:模板凸包的2/3部分,与模板凸包的相似度,大于模板凸包的1/2部分。

话不多说,上代码。

void getAlikeContours(std::vector<cv::Point> Inputlist, cv::Mat InputImage, std::vector<cv::Point> &Outputlist)
{
 Mat image;
 InputImage.copyTo(image);
 vector<vector<Point> > contours;
 findContours(image, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);//查找最外层轮廓
 for (int idx = contours.size() - 1; idx >= 0; idx--)
  {
	for (int i = contours[idx].size() - 1; i >= 0; i--)
	{
		if (contours[idx][i].x == 1 || contours[idx][i].y == 1 || contours[idx][i].x == image.cols - 2 || contours[idx][i].y == image.rows - 2)
		{
			swap(contours[idx][i], contours[idx][contours[idx].size() - 1]);
			contours[idx].pop_back();
			
		}
	}
	//可能会存在空的轮廓,把他们删除
	for (int idx = contours.size() - 1; idx >= 0; idx--)
	{
		if (contours[idx].size() == 0) contours.erase(contours.begin() + idx);
	}
 
	while (true)
	{
		if (contours.size() == 0) break;
		if (contours.size() == 1)
		{
			vector<Point> finalList;
			finalList.assign(contours[0].begin(), contours[0].end());
			convexHull(Mat(finalList), Outputlist, true);
			break;
		}
 
		int maxContourIdx = 0;
		int maxContourPtNum = 0;
		for (int index = contours.size() - 1; index >= 0; index--)
		{
			if (contours[index].size() > maxContourPtNum)
			{
				maxContourPtNum = contours[index].size();
				maxContourIdx = index;
			}
		}
		//第二大轮廓
		int secondContourIdx = 0;
		int secondContourPtNum = 0;
		for (int index = contours.size() - 1; index >= 0; index--)
		{
			if (index == maxContourIdx) continue;
			if (contours[index].size() > secondContourPtNum)
			{
				secondContourPtNum = contours[index].size();
				secondContourIdx = index;
			}
		}
		vector<Point> maxlist;
		vector<Point> maxAndseclist;
		vector<Point> maxlistHull;
		vector<Point> maxAndseclistHull;
		maxlist.insert(maxlist.end(), contours[maxContourIdx].begin(), contours[maxContourIdx].end());
		maxAndseclist.insert(maxAndseclist.end(), contours[maxContourIdx].begin(), contours[maxContourIdx].end());
		maxAndseclist.insert(maxAndseclist.end(), contours[secondContourIdx].begin(), contours[secondContourIdx].end());
		convexHull(Mat(maxlist), maxlistHull, true);
		convexHull(Mat(maxAndseclist), maxAndseclistHull, true);
		double maxcontourScore = matchShapes(Inputlist, maxlistHull, CV_CONTOURS_MATCH_I1, 0);
		double maxandseccontourScore = matchShapes(Inputlist, maxAndseclistHull, CV_CONTOURS_MATCH_I1, 0);
		if (maxcontourScore>maxandseccontourScore)
		{
			contours[maxContourIdx].insert(contours[maxContourIdx].end(), contours[secondContourIdx].begin(), contours[secondContourIdx].end());
		}
		contours.erase(contours.begin() + secondContourIdx);
	}
}

以上这篇Opencv求取连通区域重心实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python3实现连接SQLite数据库的方法
Aug 23 Python
python常用函数详解
Sep 13 Python
Python地图绘制实操详解
Mar 04 Python
用pycharm开发django项目示例代码
Jun 13 Python
pandas 层次化索引的实现方法
Jul 06 Python
浅谈Python中(&amp;,|)和(and,or)之间的区别
Aug 07 Python
python实现高斯判别分析算法的例子
Dec 09 Python
python之MSE、MAE、RMSE的使用
Feb 24 Python
Django数据库迁移常见使用方法
Nov 12 Python
python开发一个解析protobuf文件的简单编译器
Nov 17 Python
Django使用echarts进行可视化展示的实践
Jun 10 Python
pycharm部署django项目到云服务器的详细流程
Jun 29 Python
Python中zip函数如何使用
Jun 04 #Python
Python中有几个关键字
Jun 04 #Python
Python如何转换字符串大小写
Jun 04 #Python
如何在Python对Excel进行读取
Jun 04 #Python
opencv 查找连通区域 最大面积实例
Jun 04 #Python
Python中的Cookie模块如何使用
Jun 04 #Python
Python爬虫获取页面所有URL链接过程详解
Jun 04 #Python
You might like
Discuz 5.0 中读取纯真IP数据库函数分析
2007/03/16 PHP
php文章内容分页并生成相应的htm静态页面代码
2010/06/07 PHP
php实现读取和写入tab分割的文件
2015/06/01 PHP
PHP abstract 抽象类定义与用法示例
2018/05/29 PHP
PHP7 foreach() 函数修改
2021/03/09 PHP
基于jquery的一个OutlookBar类,动态创建导航条
2010/11/19 Javascript
兼容IE和Firefox的javascript获取iframe文档内容的函数
2011/08/15 Javascript
基于jquery实现后台左侧菜单点击上下滑动显示
2013/04/11 Javascript
JS实现程序暂停与继续功能代码解读
2013/10/10 Javascript
jquery获取颜色在ie和ff下的区别示例介绍
2014/03/28 Javascript
JavaScript实现网页截图功能
2014/10/16 Javascript
浅谈document.write()输出样式
2015/05/07 Javascript
学习JavaScript设计模式(单例模式)
2015/11/26 Javascript
jquery实现树形菜单完整代码
2015/12/29 Javascript
jQuery简单验证上传文件大小及类型的方法
2016/06/02 Javascript
详解Jquery 遍历数组之$().each方法与$.each()方法介绍
2017/01/09 Javascript
Angularjs中的ui-bootstrap的使用教程
2017/02/19 Javascript
EasyUI Datebox 日期验证之开始日期小于结束时间
2017/05/19 Javascript
Vue-router路由判断页面未登录跳转到登录页面的实例
2017/10/26 Javascript
Vue动态加载异步组件的方法
2018/11/21 Javascript
js根据需要计算数组中重复出现某个元素的个数
2019/01/18 Javascript
基于javascript实现碰撞检测
2020/03/12 Javascript
微信小程序入门之指南针
2020/10/22 Javascript
[01:30:15]DOTA2-DPC中国联赛 正赛 Ehome vs Aster BO3 第二场 2月2日
2021/03/11 DOTA
Python实现求数列和的方法示例
2018/01/12 Python
python编写简易聊天室实现局域网内聊天功能
2018/07/28 Python
Python queue队列原理与应用案例分析
2019/09/27 Python
Python使用微信接入图灵机器人过程解析
2019/11/04 Python
Django自定义用户表+自定义admin后台中的字段实例
2019/11/18 Python
Python 基于wxpy库实现微信添加好友功能(简洁)
2019/11/29 Python
anaconda3安装及jupyter环境配置全教程
2020/08/24 Python
探矿工程师自荐信
2014/01/24 职场文书
司法局群众路线教育实践活动整改措施思想汇报
2014/10/13 职场文书
结婚仪式主持词
2015/06/29 职场文书
SpringBoot2 参数管理实践之入参出参与校验的方式
2021/06/16 Java/Android
关于Mybatis中SQL节点的深入解析
2022/03/19 Java/Android