Opencv求取连通区域重心实例


Posted in Python onJune 04, 2020

我们有时候需要求取某一个物体重心,这里一般将图像二值化,得出该物体的轮廓,然后根据灰度重心法,计算出每一个物体的中心。

步骤如下:

1)合适的阈值二值化

2)求取轮廓

3)计算重心

otsu算法求取最佳阈值

otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分,otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。

计算轮廓

opencv中函数findContours函数

findContours(二值化图像,轮廓,hierarchy,轮廓检索模式,轮廓近似办法,offset)

灰度重心法

利用灰度重心法计算中心,灰度重心法将区域内每一像素位置处的灰度值当做该点的“质量”,其求区域中心的公式为:

Opencv求取连通区域重心实例

其中,f(u,v)是坐标为(u,v)的像素点的灰度值, 是目标区域集合, 是区域中心坐标,灰度重心法提取的是区域的能量中心。

//otsu算法实现函数
int Otsu(Mat &image)
{
  int width = image.cols;
  int height = image.rows;
  int x = 0, y = 0;
  int pixelCount[256];
  float pixelPro[256];
  int i, j, pixelSum = width * height, threshold = 0;

  uchar* data = (uchar*)image.data;

  //初始化 
  for (i = 0; i < 256; i++)
  {
    pixelCount[i] = 0;
    pixelPro[i] = 0;
  }

  //统计灰度级中每个像素在整幅图像中的个数 
  for (i = y; i < height; i++)
  {
    for (j = x; j<width; j++)
    {
      pixelCount[data[i * image.step + j]]++;
    }
  }


  //计算每个像素在整幅图像中的比例 
  for (i = 0; i < 256; i++)
  {
    pixelPro[i] = (float)(pixelCount[i]) / (float)(pixelSum);
  }

  //经典ostu算法,得到前景和背景的分割 
  //遍历灰度级[0,255],计算出方差最大的灰度值,为最佳阈值 
  float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0;
  for (i = 0; i < 256; i++)
  {
    w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;

    for (j = 0; j < 256; j++)
    {
      if (j <= i) //背景部分 
      {
        //以i为阈值分类,第一类总的概率 
        w0 += pixelPro[j];
        u0tmp += j * pixelPro[j];
      }
      else    //前景部分 
      {
        //以i为阈值分类,第二类总的概率 
        w1 += pixelPro[j];
        u1tmp += j * pixelPro[j];
      }
    }

    u0 = u0tmp / w0;    //第一类的平均灰度 
    u1 = u1tmp / w1;    //第二类的平均灰度 
    u = u0tmp + u1tmp;   //整幅图像的平均灰度 
                //计算类间方差 
    deltaTmp = w0 * (u0 - u)*(u0 - u) + w1 * (u1 - u)*(u1 - u);
    //找出最大类间方差以及对应的阈值 
    if (deltaTmp > deltaMax)
    {
      deltaMax = deltaTmp;
      threshold = i;
    }
  }
  //返回最佳阈值; 
  return threshold;
}

int main()
{
  Mat White=imread("white.tif");//读取图像
  int threshold_white = otsu(White);//阈值计算,利用otsu
  cout << "最佳阈值:" << threshold_white << endl;
  Mat thresholded = Mat::zeros(White.size(), White.type());
  threshold(White, thresholded, threshold_white, 255, CV_THRESH_BINARY);//二值化
  vector<vector<Point>>contours;
  vector<Vec4i>hierarchy;
  findContours(thresholded, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);//查找轮廓

  int i = 0;
  int count = 0;
  Point pt[10];//假设有三个连通区域
  Moments moment;//矩
  vector<Point>Center;//创建一个向量保存重心坐标
  for (; i >= 0; i = hierarchy[i][0])//读取每一个轮廓求取重心
  {
    Mat temp(contours.at(i));
    Scalar color(0, 0, 255);
    moment = moments(temp, false);
    if (moment.m00 != 0)//除数不能为0
    {
      pt[i].x = cvRound(moment.m10 / moment.m00);//计算重心横坐标
      pt[i].y = cvRound(moment.m01 / moment.m00);//计算重心纵坐标

    }
      Point p = Point(pt[i].x, pt[i].y);//重心坐标
      circle(White, p, 1, color, 1, 8);//原图画出重心坐标
      count++;//重心点数或者是连通区域数
      Center.push_back(p);//将重心坐标保存到Center向量中
    }
  }
  cout << "重心点个数:" << Center.size() << endl;
  cout << "轮廓数量:" << contours.size() << endl;
  imwrite("Center.tif", White);
}

原图:

Opencv求取连通区域重心实例

二值化:

Opencv求取连通区域重心实例

重心点:

Opencv求取连通区域重心实例

补充知识:opencv 根据模板凸包求阈值化后的轮廓组合

图像处理中,要求特征与背景的对比度高,同时,合适的图像分割也是解决问题的关键。

博主以前的方法,默认为特征必然是最大的连通域,所以阈值化后,查找轮廓,直接提取面积最大的轮廓即可。

但可能会存在另一种情况,不论怎么阈值化和膨胀,想要的特征被分成好几块,也即断开了。此时,再加上一些不可预测的干扰和噪声,findcontours之后,会得到很多轮廓。

那么问题来了,我们需要的是哪个轮廓,或者是哪几个轮廓组合的区域?

本文的意义也在于此。

根据模板的凸包,求出图像中最相似的轮廓组合。

本方法,主要用到matchshapes函数,并基于这样一个前提:模板凸包的2/3部分,与模板凸包的相似度,大于模板凸包的1/2部分。

话不多说,上代码。

void getAlikeContours(std::vector<cv::Point> Inputlist, cv::Mat InputImage, std::vector<cv::Point> &Outputlist)
{
 Mat image;
 InputImage.copyTo(image);
 vector<vector<Point> > contours;
 findContours(image, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);//查找最外层轮廓
 for (int idx = contours.size() - 1; idx >= 0; idx--)
  {
	for (int i = contours[idx].size() - 1; i >= 0; i--)
	{
		if (contours[idx][i].x == 1 || contours[idx][i].y == 1 || contours[idx][i].x == image.cols - 2 || contours[idx][i].y == image.rows - 2)
		{
			swap(contours[idx][i], contours[idx][contours[idx].size() - 1]);
			contours[idx].pop_back();
			
		}
	}
	//可能会存在空的轮廓,把他们删除
	for (int idx = contours.size() - 1; idx >= 0; idx--)
	{
		if (contours[idx].size() == 0) contours.erase(contours.begin() + idx);
	}
 
	while (true)
	{
		if (contours.size() == 0) break;
		if (contours.size() == 1)
		{
			vector<Point> finalList;
			finalList.assign(contours[0].begin(), contours[0].end());
			convexHull(Mat(finalList), Outputlist, true);
			break;
		}
 
		int maxContourIdx = 0;
		int maxContourPtNum = 0;
		for (int index = contours.size() - 1; index >= 0; index--)
		{
			if (contours[index].size() > maxContourPtNum)
			{
				maxContourPtNum = contours[index].size();
				maxContourIdx = index;
			}
		}
		//第二大轮廓
		int secondContourIdx = 0;
		int secondContourPtNum = 0;
		for (int index = contours.size() - 1; index >= 0; index--)
		{
			if (index == maxContourIdx) continue;
			if (contours[index].size() > secondContourPtNum)
			{
				secondContourPtNum = contours[index].size();
				secondContourIdx = index;
			}
		}
		vector<Point> maxlist;
		vector<Point> maxAndseclist;
		vector<Point> maxlistHull;
		vector<Point> maxAndseclistHull;
		maxlist.insert(maxlist.end(), contours[maxContourIdx].begin(), contours[maxContourIdx].end());
		maxAndseclist.insert(maxAndseclist.end(), contours[maxContourIdx].begin(), contours[maxContourIdx].end());
		maxAndseclist.insert(maxAndseclist.end(), contours[secondContourIdx].begin(), contours[secondContourIdx].end());
		convexHull(Mat(maxlist), maxlistHull, true);
		convexHull(Mat(maxAndseclist), maxAndseclistHull, true);
		double maxcontourScore = matchShapes(Inputlist, maxlistHull, CV_CONTOURS_MATCH_I1, 0);
		double maxandseccontourScore = matchShapes(Inputlist, maxAndseclistHull, CV_CONTOURS_MATCH_I1, 0);
		if (maxcontourScore>maxandseccontourScore)
		{
			contours[maxContourIdx].insert(contours[maxContourIdx].end(), contours[secondContourIdx].begin(), contours[secondContourIdx].end());
		}
		contours.erase(contours.begin() + secondContourIdx);
	}
}

以上这篇Opencv求取连通区域重心实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用mysqldb连接数据库操作方法示例详解
Dec 03 Python
跟老齐学Python之永远强大的函数
Sep 14 Python
Python面向对象编程中的类和对象学习教程
Mar 30 Python
简单介绍Python中的struct模块
Apr 28 Python
浅谈Python中用datetime包进行对时间的一些操作
Jun 23 Python
使用Python编写一个最基础的代码解释器的要点解析
Jul 12 Python
使用Python读取安卓手机的屏幕分辨率方法
Mar 31 Python
在Windows中设置Python环境变量的实例讲解
Apr 28 Python
Python数据结构之栈、队列及二叉树定义与用法浅析
Dec 27 Python
实例讲解Python3中abs()函数
Feb 19 Python
Python使用Pickle模块进行数据保存和读取的讲解
Apr 09 Python
Python函数中apply、map、applymap的区别
Nov 27 Python
Python中zip函数如何使用
Jun 04 #Python
Python中有几个关键字
Jun 04 #Python
Python如何转换字符串大小写
Jun 04 #Python
如何在Python对Excel进行读取
Jun 04 #Python
opencv 查找连通区域 最大面积实例
Jun 04 #Python
Python中的Cookie模块如何使用
Jun 04 #Python
Python爬虫获取页面所有URL链接过程详解
Jun 04 #Python
You might like
shopex中集成的站长统计功能的代码简单分析
2011/08/11 PHP
php计算2个日期的差值函数分享
2015/02/02 PHP
php.ini中的request_order推荐设置
2015/05/10 PHP
laravel配置Redis多个库的实现方法
2019/04/10 PHP
PHP基于进程控制函数实现多线程
2020/12/09 PHP
Span元素的width属性无效果原因及解决方案
2010/01/15 Javascript
Javascript学习笔记 delete运算符
2011/09/13 Javascript
Jquery右下角抖动、浮动 实例代码(兼容ie6、FF)
2013/08/15 Javascript
5款JavaScript代码压缩工具推荐
2014/07/07 Javascript
js实现兼容IE和FF的上下层的移动
2015/05/04 Javascript
轻松实现javascript图片轮播特效
2016/01/13 Javascript
Bootstrap编写一个同时适用于PC、平板、手机的登陆页面
2016/06/30 Javascript
Js apply方法详解
2017/02/16 Javascript
JavaScript-定时器0~9抽奖系统详解(代码)
2017/08/16 Javascript
使用Vue完成一个简单的todolist的方法
2017/12/01 Javascript
vue加载自定义的js文件方法
2018/03/13 Javascript
vue.js 实现点击展开收起动画效果
2018/07/07 Javascript
JS为什么说async/await是generator的语法糖详解
2019/07/11 Javascript
在layui中使用form表单监听ajax异步验证注册的实例
2019/09/03 Javascript
[57:12]完美世界DOTA2联赛循环赛 Inki vs Matador BO2第一场 10.31
2020/11/02 DOTA
Python实现堆排序的方法详解
2016/05/03 Python
springboot配置文件抽离 git管理统 配置中心详解
2019/09/02 Python
Python 实现try重新执行
2019/12/21 Python
详解python logging日志传输
2020/07/01 Python
Python基于tkinter canvas实现图片裁剪功能
2020/11/05 Python
Python基础进阶之海量表情包多线程爬虫功能的实现
2020/12/17 Python
京东全球售:直邮香港,澳门,台湾,美国,澳大利亚等地区
2017/09/24 全球购物
比利时的在线灯具店:Lampen24.be
2019/07/01 全球购物
公司庆典邀请函范文
2014/01/13 职场文书
2014年健康教育实施方案
2014/02/17 职场文书
乡镇交通安全实施方案
2014/03/29 职场文书
婚前保证书
2014/04/29 职场文书
法人委托书范本
2014/09/15 职场文书
优秀员工事迹材料
2014/12/20 职场文书
安全保证书格式
2015/02/28 职场文书
2015年大学班级工作总结
2015/04/28 职场文书