Python实现FM算法解析


Posted in Python onJune 18, 2019

1. 什么是FM?

FM即Factor Machine,因子分解机。

2. 为什么需要FM?

1、特征组合是许多机器学习建模过程中遇到的问题,如果对特征直接建模,很有可能会忽略掉特征与特征之间的关联信息,因此,可以通过构建新的交叉特征这一特征组合方式提高模型的效果。

2、高维的稀疏矩阵是实际工程中常见的问题,并直接会导致计算量过大,特征权值更新缓慢。试想一个10000*100的表,每一列都有8种元素,经过one-hot独热编码之后,会产生一个10000*800的表。因此表中每行元素只有100个值为1,700个值为0。

而FM的优势就在于对这两方面问题的处理。首先是特征组合,通过对两两特征组合,引入交叉项特征,提高模型得分;其次是高维灾难,通过引入隐向量(对参数矩阵进行矩阵分解),完成对特征的参数估计。

3. FM用在哪?

我们已经知道了FM可以解决特征组合以及高维稀疏矩阵问题,而实际业务场景中,电商、豆瓣等推荐系统的场景是使用最广的领域,打个比方,小王只在豆瓣上浏览过20部电影,而豆瓣上面有20000部电影,如果构建一个基于小王的电影矩阵,毫无疑问,里面将有199980个元素全为0。而类似于这样的问题就可以通过FM来解决。

4. FM长什么样?

在展示FM算法前,我们先回顾一下最常见的线性表达式:

Python实现FM算法解析

其中w0为初始权值,或者理解为偏置项,wi为每个特征xi对应的权值。可以看到,这种线性表达式只描述了每个特征与输出的关系。

FM的表达式如下,可观察到,只是在线性表达式后面加入了新的交叉项特征及对应的权值。

Python实现FM算法解析

5. FM交叉项的展开

5.1 寻找交叉项

FM表达式的求解核心在于对交叉项的求解。下面是很多人用来求解交叉项的展开式,对于第一次接触FM算法的人来说可能会有疑惑,不知道公式怎么展开的,接下来笔者会手动推导一遍。

Python实现FM算法解析

设有3个变量(特征)x1 x2 x3,每一个特征的隐变量分别为v1=(1 2 3)、v2=(4 5 6)、v3=(1 2 1),即:

Python实现FM算法解析

设交叉项所组成的权矩阵W为对称矩阵,之所以设为对称矩阵是因为对称矩阵有可以用向量乘以向量转置替代的性质。
那么W=VVT,即

Python实现FM算法解析

所以:

Python实现FM算法解析

实际上,我们应该考虑的交叉项应该是排除自身组合的项,即对于x1x1、x2x2、x3x3不认为是交叉项,那么真正的交叉项为x1x2、x1x3、x2x1、x2x3、x3x1、x3x2。

去重后,交叉项即x1x2、x1x3、x2x3。这也是公式中1/2出现的原因。

5.2 交叉项权值转换

对交叉项有了基本了解后,下面将进行公式的分解,还是以n=3为例,

Python实现FM算法解析

所以:

Python实现FM算法解析

wij可记作Python实现FM算法解析Python实现FM算法解析,这取决于vi是1*3 还是3*1 向量。

5.3 交叉项展开式

上面的例子是对3个特征做的交叉项推导,因此对具有n个特征,FM的交叉项公式就可推广为:

Python实现FM算法解析

我们还可以进一步分解:

Python实现FM算法解析

所以FM算法的交叉项最终可展开为:

Python实现FM算法解析

5.4隐向量v就是embedding vector?

假设训练数据集dataMatrix的shape为(20000,9),取其中一行数据作为一条样本i,那么样本i 的shape为(1,9),同时假设隐向量vi的shape为(9,8)(注:8为自定义值,代表embedding vector的长度)

所以5.3小节中的交叉项可以表示为:

sum((inter_1)^2 - (inter_2)^2)/2

其中:

inter_1 =i*v shape为(1,8)

inter_2 =np.multiply(i)*np.multiply(v) shape为(1,8)

可以看到,样本i 经过交叉项中的计算后,得到向量shape为(1,8)的inter_1和inter_2。

由于维度变低,所以此计算过程可以近似认为在交叉项中对样本i 进行了embedding vector转换。

故,我们需要对之前的理解进行修正:

  1. 我们口中的隐向量vi实际上是一个向量组,其形状为(输入特征One-hot后的长度,自定义长度);
  2. 隐向量vi代表的并不是embedding vector,而是在对输入进行embedding vector的向量组,也可理解为是一个权矩阵;
  3. 由输入i*vi得到的向量才是真正的embedding vector。

具体可以结合第7节点的代码实现进行理解。

6. 权值求解

利用梯度下降法,通过求损失函数对特征(输入项)的导数计算出梯度,从而更新权值。设m为样本个数,θ为权值。

如果是回归问题,损失函数一般是均方误差(MSE):

Python实现FM算法解析

所以回归问题的损失函数对权值的梯度(导数)为:

Python实现FM算法解析

如果是二分类问题,损失函数一般是logit loss:

Python实现FM算法解析

其中,Python实现FM算法解析表示的是阶跃函数Sigmoid。

Python实现FM算法解析

所以分类问题的损失函数对权值的梯度(导数)为:

Python实现FM算法解析

Python实现FM算法解析

相应的,对于常数项、一次项、交叉项的导数分别为:

Python实现FM算法解析

7. FM算法的Python实现

FM算法的Python实现流程图如下:

Python实现FM算法解析

我们需要注意以下四点:

1. 初始化参数,包括对偏置项权值w0、一次项权值w以及交叉项辅助向量的初始化;

2. 定义FM算法;

3. 损失函数梯度的定义;

4. 利用梯度下降更新参数。

下面的代码片段是以上四点的描述,其中的loss并不是二分类的损失loss,而是分类loss的梯度中的一部分:

loss = self.sigmoid(classLabels[x] * p[0, 0]) -1

实际上,二分类的损失loss的梯度可以表示为:

gradient = (self.sigmoid(classLabels[x] * p[0, 0]) -1)*classLabels[x]*p_derivative

其中 p_derivative 代表常数项、一次项、交叉项的导数(详见本文第6小节)。

FM算法代码片段

# 初始化参数
    w = zeros((n, 1)) # 其中n是特征的个数
    w_0 = 0.
    v = normalvariate(0, 0.2) * ones((n, k))
    for it in range(self.iter): # 迭代次数
      # 对每一个样本,优化
      for x in range(m):
        # 这边注意一个数学知识:对应点积的地方通常会有sum,对应位置积的地方通常都没有,详细参见矩阵运算规则,本处计算逻辑在:http://blog.csdn.net/google19890102/article/details/45532745
        # xi·vi,xi与vi的矩阵点积
        inter_1 = dataMatrix[x] * v
        # xi与xi的对应位置乘积  与  xi^2与vi^2对应位置的乘积  的点积
        inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v) # multiply对应元素相乘
        # 完成交叉项,xi*vi*xi*vi - xi^2*vi^2
        interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
        # 计算预测的输出
        p = w_0 + dataMatrix[x] * w + interaction
        print('classLabels[x]:',classLabels[x])
        print('预测的输出p:', p)
        # 计算sigmoid(y*pred_y)-1准确的说不是loss,原作者这边理解的有问题,只是作为更新w的中间参数,这边算出来的是越大越好,而下面却用了梯度下降而不是梯度上升的算法在
        loss = self.sigmoid(classLabels[x] * p[0, 0]) - 1
        if loss >= -1:
          loss_res = '正方向 '
        else:
          loss_res = '反方向'
        # 更新参数
        w_0 = w_0 - self.alpha * loss * classLabels[x]
        for i in range(n):
          if dataMatrix[x, i] != 0:
            w[i, 0] = w[i, 0] - self.alpha * loss * classLabels[x] * dataMatrix[x, i]
            for j in range(k):
              v[i, j] = v[i, j] - self.alpha * loss * classLabels[x] * (
                  dataMatrix[x, i] * inter_1[0, j] - v[i, j] * dataMatrix[x, i] * dataMatrix[x, i])

FM算法完整实现

# -*- coding: utf-8 -*-

from __future__ import division
from math import exp
from numpy import *
from random import normalvariate # 正态分布
from sklearn import preprocessing
import numpy as np

'''
  data : 数据的路径
  feature_potenital : 潜在分解维度数
  alpha : 学习速率
  iter : 迭代次数
  _w,_w_0,_v : 拆分子矩阵的weight
  with_col : 是否带有columns_name
  first_col : 首列有价值的feature的index
'''


class fm(object):
  def __init__(self):
    self.data = None
    self.feature_potential = None
    self.alpha = None
    self.iter = None
    self._w = None
    self._w_0 = None
    self.v = None
    self.with_col = None
    self.first_col = None

  def min_max(self, data):
    self.data = data
    min_max_scaler = preprocessing.MinMaxScaler()
    return min_max_scaler.fit_transform(self.data)

  def loadDataSet(self, data, with_col=True, first_col=2):
    # 我就是闲的蛋疼,明明pd.read_table()可以直接度,非要搞这样的,显得代码很长,小数据下完全可以直接读嘛,唉~
    self.first_col = first_col
    dataMat = []
    labelMat = []
    fr = open(data)
    self.with_col = with_col
    if self.with_col:
      N = 0
      for line in fr.readlines():
        # N=1时干掉列表名
        if N > 0:
          currLine = line.strip().split()
          lineArr = []
          featureNum = len(currLine)
          for i in range(self.first_col, featureNum):
            lineArr.append(float(currLine[i]))
          dataMat.append(lineArr)
          labelMat.append(float(currLine[1]) * 2 - 1)
        N = N + 1
    else:
      for line in fr.readlines():
        currLine = line.strip().split()
        lineArr = []
        featureNum = len(currLine)
        for i in range(2, featureNum):
          lineArr.append(float(currLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(currLine[1]) * 2 - 1)
    return mat(self.min_max(dataMat)), labelMat

  def sigmoid(self, inx):
    # return 1.0/(1+exp(min(max(-inx,-10),10)))
    return 1.0 / (1 + exp(-inx))

  # 得到对应的特征weight的矩阵
  def fit(self, data, feature_potential=8, alpha=0.01, iter=100):
    # alpha是学习速率
    self.alpha = alpha
    self.feature_potential = feature_potential
    self.iter = iter
    # dataMatrix用的是mat, classLabels是列表
    dataMatrix, classLabels = self.loadDataSet(data)
    print('dataMatrix:',dataMatrix.shape)
    print('classLabels:',classLabels)
    k = self.feature_potential
    m, n = shape(dataMatrix)
    # 初始化参数
    w = zeros((n, 1)) # 其中n是特征的个数
    w_0 = 0.
    v = normalvariate(0, 0.2) * ones((n, k))
    for it in range(self.iter): # 迭代次数
      # 对每一个样本,优化
      for x in range(m):
        # 这边注意一个数学知识:对应点积的地方通常会有sum,对应位置积的地方通常都没有,详细参见矩阵运算规则,本处计算逻辑在:http://blog.csdn.net/google19890102/article/details/45532745
        # xi·vi,xi与vi的矩阵点积
        inter_1 = dataMatrix[x] * v
        # xi与xi的对应位置乘积  与  xi^2与vi^2对应位置的乘积  的点积
        inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v) # multiply对应元素相乘
        # 完成交叉项,xi*vi*xi*vi - xi^2*vi^2
        interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
        # 计算预测的输出
        p = w_0 + dataMatrix[x] * w + interaction
        print('classLabels[x]:',classLabels[x])
        print('预测的输出p:', p)
        # 计算sigmoid(y*pred_y)-1
        loss = self.sigmoid(classLabels[x] * p[0, 0]) - 1
        if loss >= -1:
          loss_res = '正方向 '
        else:
          loss_res = '反方向'
        # 更新参数
        w_0 = w_0 - self.alpha * loss * classLabels[x]
        for i in range(n):
          if dataMatrix[x, i] != 0:
            w[i, 0] = w[i, 0] - self.alpha * loss * classLabels[x] * dataMatrix[x, i]
            for j in range(k):
              v[i, j] = v[i, j] - self.alpha * loss * classLabels[x] * (
                  dataMatrix[x, i] * inter_1[0, j] - v[i, j] * dataMatrix[x, i] * dataMatrix[x, i])
      print('the no %s times, the loss arrach %s' % (it, loss_res))
    self._w_0, self._w, self._v = w_0, w, v

  def predict(self, X):
    if (self._w_0 == None) or (self._w == None).any() or (self._v == None).any():
      raise NotFittedError("Estimator not fitted, call `fit` first")
    # 类型检查
    if isinstance(X, np.ndarray):
      pass
    else:
      try:
        X = np.array(X)
      except:
        raise TypeError("numpy.ndarray required for X")
    w_0 = self._w_0
    w = self._w
    v = self._v
    m, n = shape(X)
    result = []
    for x in range(m):
      inter_1 = mat(X[x]) * v
      inter_2 = mat(multiply(X[x], X[x])) * multiply(v, v) # multiply对应元素相乘
      # 完成交叉项
      interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
      p = w_0 + X[x] * w + interaction # 计算预测的输出
      pre = self.sigmoid(p[0, 0])
      result.append(pre)
    return result

  def getAccuracy(self, data):
    dataMatrix, classLabels = self.loadDataSet(data)
    w_0 = self._w_0
    w = self._w
    v = self._v
    m, n = shape(dataMatrix)
    allItem = 0
    error = 0
    result = []
    for x in range(m):
      allItem += 1
      inter_1 = dataMatrix[x] * v
      inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v) # multiply对应元素相乘
      # 完成交叉项
      interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
      p = w_0 + dataMatrix[x] * w + interaction # 计算预测的输出
      pre = self.sigmoid(p[0, 0])
      result.append(pre)
      if pre < 0.5 and classLabels[x] == 1.0:
        error += 1
      elif pre >= 0.5 and classLabels[x] == -1.0:
        error += 1
      else:
        continue
    # print(result)
    value = 1 - float(error) / allItem
    return value


class NotFittedError(Exception):
  """
  Exception class to raise if estimator is used before fitting
  """
  pass


if __name__ == '__main__':
  fm()

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python通过pil将图片转换成黑白效果的方法
Mar 16 Python
分享Python字符串关键点
Dec 13 Python
python版学生管理系统
Jan 10 Python
Python实现繁体中文与简体中文相互转换的方法示例
Dec 18 Python
wxPython绘图模块wxPyPlot实现数据可视化
Nov 19 Python
Python vtk读取并显示dicom文件示例
Jan 13 Python
基于python生成英文版词云图代码实例
May 16 Python
详解Flask前后端分离项目案例
Jul 24 Python
Python如何读写字节数据
Aug 05 Python
Node.js 和 Python之间该选择哪个?
Aug 05 Python
详解如何在pyqt中通过OpenCV实现对窗口的透视变换
Sep 20 Python
分享Python获取本机IP地址的几种方法
Mar 17 Python
python pygame实现五子棋小游戏
Oct 26 #Python
PyQt 实现使窗口中的元素跟随窗口大小的变化而变化
Jun 18 #Python
python制作简单五子棋游戏
Jun 18 #Python
Python利用pandas处理Excel数据的应用详解
Jun 18 #Python
PyQt5固定窗口大小的方法
Jun 18 #Python
Python格式化字符串f-string概览(小结)
Jun 18 #Python
Python 安装第三方库 pip install 安装慢安装不上的解决办法
Jun 18 #Python
You might like
图书管理程序(二)
2006/10/09 PHP
解析数组非数字键名引号的必要性
2013/08/09 PHP
两级联动select刷新后其值保持不变的实现方法
2014/01/27 PHP
Thinkphp搭建包括JS多语言的多语言项目实现方法
2014/11/24 PHP
php面向对象编程self和static的区别
2016/05/08 PHP
自制PHP框架之模型与数据库
2017/05/07 PHP
些很实用且必用的小脚本代码
2006/06/26 Javascript
js获取电脑分辨率的思路及操作
2013/11/22 Javascript
jquery实现的鼠标拖动排序Li或Table
2014/05/04 Javascript
使用insertAfter()方法在现有元素后添加一个新元素
2014/05/28 Javascript
jquery进行数组遍历如何跳出当前的each循环
2014/06/05 Javascript
js实现简单选项卡与自动切换效果的方法
2015/04/10 Javascript
用自定义图片代替原生checkbox实现全选,删除以及提交的方法
2016/10/18 Javascript
对称加密与非对称加密优缺点详解
2017/02/06 Javascript
vue2手机APP项目添加开屏广告或者闪屏广告
2017/11/28 Javascript
vue自定义移动端touch事件之点击、滑动、长按事件
2018/07/10 Javascript
jQuery 选择器用法基础入门示例
2020/01/04 jQuery
python发送HTTP请求的方法小结
2015/07/08 Python
Python3连接MySQL(pymysql)模拟转账实现代码
2016/05/24 Python
Python Queue模块详细介绍及实例
2016/12/27 Python
python读取并定位excel数据坐标系详解
2019/06/26 Python
Python从入门到精通之环境搭建教程图解
2019/09/26 Python
Python使用graphviz画流程图过程解析
2020/03/31 Python
python plt可视化——打印特殊符号和制作图例代码
2020/04/17 Python
浅析HTML5的WebSocket与服务器推送事件
2016/02/19 HTML / CSS
2013年学期结束动员演讲稿
2014/01/07 职场文书
xxx同志考察材料
2014/02/07 职场文书
《地震中的父与子》教学反思
2014/04/10 职场文书
保护动物倡议书
2014/04/15 职场文书
产品开发计划书
2014/04/27 职场文书
员工保密承诺书
2014/05/28 职场文书
2014银行授权委托书样本
2014/10/04 职场文书
毕业生银行实习自我鉴定
2014/10/14 职场文书
2014年小学教师工作总结
2014/11/10 职场文书
2015年转正工作总结范文
2015/04/02 职场文书
德劲DE1107指针试高灵敏度全波段收音机机评
2022/04/05 无线电