浅谈Python中的可迭代对象、迭代器、For循环工作机制、生成器


Posted in Python onMarch 11, 2019

1.iterable iterator区别

要了解两者区别,先要了解一下迭代器协议:
迭代器协议是指:对象需要提供__next__()方法,它返回迭代中的元素,在没有更多元素后,抛出StopIteration异常,终止迭代。
可迭代对象就是:实现了迭代器协议的对象。
协议是一种约定,可迭代对象实现迭代器协议,Python的内置工具(如for循环,sum,min,max函数等)通过迭代器协议访问对象,因此,for循环并不需要知道对象具体是什么,只需要知道对象能够实现迭代器协议即可。
迭代器(iterator)与可迭代对象(iterable)并不是同一个概念。

直观上:

1.可迭代对象(iterable):凡是具有__iter__的方法的类,都是可迭代的类。可迭代类创建的对象实现了__iter__方法,因此就是可迭代对象。用list、tuple等容器创建的对象,都是可迭代对象。可迭代对象通过__iter__方法返回一个迭代器,然后在内部调用__next__方法进行迭代,最后没有元素时,抛出异常(这个异常python自己会处理,不会让开发者看见)。

2.迭代器(iterator):迭代器对象必须同时实现__iter__和__next__方法才是迭代器。对于迭代器来说,__iter__ 返回的是它自身 self,__next__ 则是返回迭代器中的下一个值,最后没有元素时,抛出异常(异常可以被开发者看到)。

从上面2点可以看出:

1.迭代器一定是可迭代对象,因为它实现了__iter__()方法;

2.通过iter()方法(在类的内部就是__iter__)能够使一个可迭代对象返回一个迭代器。

3.迭代器的 __iter__ 方法返回的是自身,并不产生新的迭代器对象。而可迭代对象的 __iter__ 方法通常会返回一个新的迭代器对象。

第3点性质正是可迭代对象可以重复遍历的原因(每次返回一个独立的迭代器,就可以保证不同的迭代过程不会互相影响);而迭代器由于返回自身,因此只能遍历一次。

上面3点可以通过下面的例子看出来:

from collections import Iterable
from collections import Iterator
print isinstance(iter([1,2]),Iterator)
print isinstance(iter([1,2]),Iterable)
print isinstance([1,2],Iterator)
print isinstance([1,2],Iterable)
##result
True
True
False
True
##id可以查看一个对象在内存中的地址
test=[1,2,3]
testIter=iter(test)
print id(testIter)
print id(testIter)
print id(iter(test))
print id(iter(test))
print id(test.__iter__())
print id(test.__iter__())
##result:可迭代对象每次调用iter方法都会返回一个新的迭代器对象,而迭代器对象调用iter方法返回自身
67162576 
67162576 
67162688 
67162632 
67162856 
67163024

2.iterable的工作机制

拿一个例子看看,首先定义一个有__iter__方法,但是没有next()方法的类 (PS:在python2中是next(),python3是__next__()):

from collections import Iterable, Iterator
class Student(object):
 def __init__(self,score):
 self.score=score
 def __iter__(self):
 return iter(self.score)
 
test= Student([80,90,95])
print isinstance(test, Iterable)
print isinstance(test, Iterator)
for i in test:
 print i
##result
True
False
80
90
95
##可重复遍历
for i in test:
 print i
##result
80
90
95

上面代码的结果印证了定义中提到的:

缺少了next()方法,可迭代对象就不是迭代器。

此外,注意到:可迭代对象通过__iter__方法每次都返回了一个独立的迭代器,这样就可以保证不同的迭代过程不会互相影响。

也就是说,通过iterable可以实现重复遍历,而迭代器是无法重复遍历的!

因此,如果想要把可迭代对象转变为迭代器,可以先调用iter()方法返回一个迭代器。然后就可以用next()不断迭代了!

print isinstance(iter(test),Iterator)
testIter=iter(test)
print testIter.next()
print testIter.next()
print testIter.next()
##result
True
80
90
95
##一旦取完了可迭代对象中所有的元素,再次调用next就会发生异常
print testIter.next()
##result
StopIteration:

3.迭代器Iterator的工作机制

看下面这个例子:

class Student(object):
 def __init__(self,score):
 self.score=score
 def __iter__(self):
 return self
 
 def next(self):
 if self.score<100:
 self.score+=1
 return self.score
 else:
 raise StopIteration()
 
test= Student(90)
print isinstance(test, Iterable)
print isinstance(test, Iterator)
print test.next()
print test.next()
print test.next()
for i in test:
 print i
##result
True
True
91
92
93
94
95
96
97
98
99
100
##如果此时再对test这个迭代器调用next方法,就会抛出异常
test.next()
##result
StopIteration:

这个例子印证了定义中的:迭代器对象必须同时实现__iter__和__next__方法才是迭代器。

那么,使用迭代器好处在哪呢?

Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

一个很常见的应用就是:Python在处理列表的时候,是直接把整个列表读进内存的,当遇到大量样本时的时候会变得很慢。而迭代器的优势在于只把需要的元素读进内存,因此占用内存更少。

换句话说,迭代器是一种惰性求值模式,它是有状态的,只有在调用时才返回值,没有调用的时候就等待下一次调用。这样就节省了大量内存空间。

这个例子印证了定义中的:迭代器对象必须同时实现__iter__和__next__方法才是迭代器。

那么,使用迭代器好处在哪呢?

Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

一个很常见的应用就是:Python在处理列表的时候,是直接把整个列表读进内存的,当遇到大量样本时的时候会变得很慢。而迭代器的优势在于只把需要的元素读进内存,因此占用内存更少。

换句话说,迭代器是一种惰性求值模式,它是有状态的,只有在调用时才返回值,没有调用的时候就等待下一次调用。这样就节省了大量内存空间。

4.for循环的工作机制

有了上面2个例子,就可以总结一下在可迭代对象与迭代器中的For循环工作机制了。

当对象本身就是迭代器时,For循环工作机制:

  1. 调用 __iter__方法,返回自身self,也就是返回迭代器。
  2. 不断地调用迭代器的next()方法,每次按序返回迭代器中的一个值。
  3. 迭代到最后没有元素时,就抛出异常 StopIteration

在可迭代对象中,for循环工作机制:

  1. 先判断对象是否为可迭代对象(等价于判断有没有__iter__或__getitem__方法),没有的话直接报错,抛出TypeError异常。有的话,调用 __iter__方法,返回一个迭代器。
  2. 在python内部不断地调用迭代器的__next__方法,每次按序返回迭代器中的一个值。
  3. 迭代到最后没有元素时,就抛出异常 StopIteration,这个异常 python 自己会处理,不会暴露给开发者。

借用网络上的一张图直观理解一下:

浅谈Python中的可迭代对象、迭代器、For循环工作机制、生成器

此外,还要注意,python中的for循环其实兼容了两种机制:

  1. 如果对象有__iter__会返回一个迭代器。
  2. 如果对象没有__iter__,但是实现了__getitem__,会改用下标迭代的方式。
  3. __getitem__可以帮助一个对象进行取数和切片操作。

当for发现没有__iter__但是有__getitem__的时候,会从0开始依次读取相应的下标,直到发生IndexError为止,这是一种旧的迭代协议。iter方法也会处理这种情况,在不存在__iter__的时候,返回一个下标迭代的iterator对象来代替。一个重要的例子是str,字符串就是没有__iter__方法的,但是却依然可以迭代,原因就是其在for循环时调用了__getitem__方法。

看一个例子:

from collections import Iterable, Iterator
class Student(object):
 def __init__(self,score):
 self.score=score
 def __getitem__(self,n):
 return self.score[n]
 
test= Student([80,90,95])
print isinstance(test, Iterable)
print isinstance(test, Iterator)
print isinstance(iter(test), Iterable)
print isinstance(iter(test), Iterator)
for i in test:
 print i
##result
False
False
True
True
80
90
95
for i in range(0,3):
 print test[i]
##result
80
90
95
for i in iter(test):
 print i
##result
80
90
95

可以看到,实现了__getitem__方法的对象本身,尽管不是iterable与iterator,仍旧是可以调用for循环的。
通过iter方法,返回一个下标迭代的iterator对象。

5.generator的原理

最后说一下生成器,生成器是一种特殊的迭代器,当然也是可迭代对象。
对于生成器,Python会自动实现迭代器协议,以便应用到迭代中(如for循环,sum函数)。由于生成器自动实现了迭代器协议,所以,我们可以调用它的next方法,并且,在没有值可以返回的时候,生成器自动产生StopIteration异常。
创建生成器的方法:将return 改为yield。具体的实现网络上教程很多,不细说了。

6.总结

到一幅图片很好的描述了本文的所有内容,就拿它作为文末的总结吧!

浅谈Python中的可迭代对象、迭代器、For循环工作机制、生成器

以上所述是小编给大家介绍的Python中的可迭代对象、迭代器、For循环工作机制、生成器详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!

Python 相关文章推荐
Python进阶篇之字典操作总结
Nov 16 Python
Python中的sort()方法使用基础教程
Jan 08 Python
python 实现判断ip连通性的方法总结
Apr 22 Python
浅谈python中requests模块导入的问题
May 18 Python
解决安装pycharm后不能执行python脚本的问题
Jan 19 Python
Python后台管理员管理前台会员信息的讲解
Jan 28 Python
Python实现的文轩网爬虫完整示例
May 16 Python
Python实现直方图均衡基本原理解析
Aug 08 Python
Python Process多进程实现过程
Oct 22 Python
python使用梯度下降算法实现一个多线性回归
Mar 24 Python
python中字典增加和删除使用方法
Sep 30 Python
selenium+python实现基本自动化测试的示例代码
Jan 27 Python
python使用selenium实现批量文件下载
Mar 11 #Python
利用Python实现微信找房机器人实例教程
Mar 10 #Python
谈谈Python中的while循环语句
Mar 10 #Python
15行Python代码实现网易云热门歌单实例教程
Mar 10 #Python
Python如何爬取实时变化的WebSocket数据的方法
Mar 09 #Python
浅谈python的深浅拷贝以及fromkeys的用法
Mar 08 #Python
Python高级特性与几种函数的讲解
Mar 08 #Python
You might like
PHP中include/require/include_once/require_once使用心得
2016/08/28 PHP
javascript 常用方法总结
2009/06/03 Javascript
文本框根据输入内容自适应高度的代码
2011/10/24 Javascript
关于图片的预加载过程中隐藏未知的
2012/12/19 Javascript
AngularJS语法详解
2015/01/23 Javascript
nodejs爬虫抓取数据乱码问题总结
2015/07/03 NodeJs
利用jQuery中的ajax分页实现代码
2016/02/25 Javascript
Bootstrap学习笔记之js组件(4)
2016/06/12 Javascript
Vue.js仿Metronic高级表格(一)静态设计
2017/04/17 Javascript
微信小程序自定义导航隐藏和显示功能
2017/06/13 Javascript
Vue中的Vux配置指南
2017/12/08 Javascript
jQuery中ajax获取数据赋值给页面的实例
2017/12/31 jQuery
深度了解vue.js中hooks的相关知识
2019/06/14 Javascript
Vue动态生成表格的行和列
2019/07/18 Javascript
[45:14]Optic vs VP 2018国际邀请赛淘汰赛BO3 第二场 8.24
2018/08/25 DOTA
python基础教程之数字处理(math)模块详解
2014/03/25 Python
python enumerate函数的使用方法总结
2017/11/15 Python
Python实现base64编码的图片保存到本地功能示例
2018/06/22 Python
Python 实现王者荣耀中的敏感词过滤示例
2019/01/21 Python
python 实现图片旋转 上下左右 180度旋转的示例
2019/01/24 Python
Python如何调用JS文件中的函数
2019/08/16 Python
Python csv模块使用方法代码实例
2019/08/29 Python
Django+uni-app实现数据通信中的请求跨域的示例代码
2019/10/12 Python
Python中zipfile压缩文件模块的基本使用教程
2020/06/14 Python
印度购买眼镜和太阳镜网站:Coolwinks
2018/09/26 全球购物
一道输出判断型Java面试题
2014/10/01 面试题
通信专业个人自我鉴定
2013/10/21 职场文书
《再别康桥》教学反思
2014/02/12 职场文书
医院合作协议书
2014/08/19 职场文书
年检委托书
2014/08/30 职场文书
小学“向国旗敬礼”网上签名寄语活动总结
2014/09/27 职场文书
国防教育标语
2014/10/08 职场文书
健康状况证明模板
2014/10/23 职场文书
2014幼儿园中班工作总结
2014/11/10 职场文书
中标通知书格式
2015/04/17 职场文书
单独二胎证明
2015/06/24 职场文书