python数字图像处理之骨架提取与分水岭算法


Posted in Python onApril 27, 2018

骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内。

1、骨架提取

骨架提取,也叫二值图像细化。这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示。

morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数。我们先来看Skeletonize()函数。

格式为:skimage.morphology.skeletonize(image)

输入和输出都是一幅二值图像。

例1:

from skimage import morphology,draw
import numpy as np
import matplotlib.pyplot as plt

#创建一个二值图像用于测试
image = np.zeros((400, 400))

#生成目标对象1(白色U型)
image[10:-10, 10:100] = 1
image[-100:-10, 10:-10] = 1
image[10:-10, -100:-10] = 1

#生成目标对象2(X型)
rs, cs = draw.line(250, 150, 10, 280)
for i in range(10):
 image[rs + i, cs] = 1
rs, cs = draw.line(10, 150, 250, 280)
for i in range(20):
 image[rs + i, cs] = 1

#生成目标对象3(O型)
ir, ic = np.indices(image.shape)
circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2
circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2
image[circle1] = 1
image[circle2] = 0

#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20)

ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20)

fig.tight_layout()
plt.show()

生成一幅测试图像,上面有三个目标对象,分别进行骨架提取,结果如下:

python数字图像处理之骨架提取与分水岭算法

例2:利用系统自带的马图片进行骨架提取

from skimage import morphology,data,color
import matplotlib.pyplot as plt

image=color.rgb2gray(data.horse())
image=1-image #反相
#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20)

ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20)

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

medial_axis就是中轴的意思,利用中轴变换方法计算前景(1值)目标对象的宽度,格式为:

skimage.morphology.medial_axis(image,mask=None,return_distance=False)

mask: 掩模。默认为None, 如果给定一个掩模,则在掩模内的像素值才执行骨架算法。

return_distance: bool型值,默认为False. 如果为True, 则除了返回骨架,还将距离变换值也同时返回。这里的距离指的是中轴线上的所有点与背景点的距离。

import numpy as np
import scipy.ndimage as ndi
from skimage import morphology
import matplotlib.pyplot as plt

#编写一个函数,生成测试图像
def microstructure(l=256):
 n = 5
 x, y = np.ogrid[0:l, 0:l]
 mask = np.zeros((l, l))
 generator = np.random.RandomState(1)
 points = l * generator.rand(2, n**2)
 mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n))
 return mask > mask.mean()

data = microstructure(l=64) #生成测试图像

#计算中轴和距离变换值
skel, distance =morphology.medial_axis(data, return_distance=True)

#中轴上的点到背景像素点的距离
dist_on_skel = distance * skel

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
#用光谱色显示中轴
ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest')
ax2.contour(data, [0.5], colors='w') #显示轮廓线

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

2、分水岭算法

分水岭在地理学上就是指一个山脊,水通常会沿着山脊的两边流向不同的“汇水盆”。分水岭算法是一种用于图像分割的经典算法,是基于拓扑理论的数学形态学的分割方法。如果图像中的目标物体是连在一起的,则分割起来会更困难,分水岭算法经常用于处理这类问题,通常会取得比较好的效果。

分水岭算法可以和距离变换结合,寻找“汇水盆地”和“分水岭界限”,从而对图像进行分割。二值图像的距离变换就是每一个像素点到最近非零值像素点的距离,我们可以使用scipy包来计算距离变换。

在下面的例子中,需要将两个重叠的圆分开。我们先计算圆上的这些白色像素点到黑色背景像素点的距离变换,选出距离变换中的最大值作为初始标记点(如果是反色的话,则是取最小值),从这些标记点开始的两个汇水盆越集越大,最后相交于分山岭。从分山岭处断开,我们就得到了两个分离的圆。

例1:基于距离变换的分山岭图像分割

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,feature

#创建两个带有重叠圆的图像
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 16, 20
mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2
mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2
image = np.logical_or(mask_circle1, mask_circle2)

#现在我们用分水岭算法分离两个圆
distance = ndi.distance_transform_edt(image) #距离变换
local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)),
       labels=image) #寻找峰值
markers = ndi.label(local_maxi)[0] #初始标记点
labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes

ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
ax1.set_title("Distance")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented")

for ax in axes:
 ax.axis('off')

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

分水岭算法也可以和梯度相结合,来实现图像分割。一般梯度图像在边缘处有较高的像素值,而在其它地方则有较低的像素值,理想情况 下,分山岭恰好在边缘。因此,我们可以根据梯度来寻找分山岭。

例2:基于梯度的分水岭图像分割

import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,color,data,filter

image =color.rgb2gray(data.camera())
denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声

#将梯度值低于10的作为开始标记点
markers = filter.rank.gradient(denoised, morphology.disk(5)) <10
markers = ndi.label(markers)[0]

gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度
labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes

ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest')
ax1.set_title("Gradient")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented")

for ax in axes:
 ax.axis('off')

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现豆瓣图片下载的方法
May 25 Python
python中的闭包函数
Feb 09 Python
python3爬取数据至mysql的方法
Jun 26 Python
对python3 一组数值的归一化处理方法详解
Jul 11 Python
wxPython窗体拆分布局基础组件
Nov 19 Python
Pytorch之保存读取模型实例
Dec 30 Python
Python模拟FTP文件服务器的操作方法
Feb 18 Python
python读写文件write和flush的实现方式
Feb 21 Python
django admin管理工具自定义时间区间筛选器DateRangeFilter介绍
May 19 Python
Python3爬虫中关于中文分词的详解
Jul 29 Python
用python 绘制茎叶图和复合饼图
Feb 26 Python
OpenCV-Python实现人脸磨皮算法
Jun 07 Python
python多线程之事件Event的使用详解
Apr 27 #Python
python线程池threadpool使用篇
Apr 27 #Python
Python实现删除时保留特定文件夹和文件的示例
Apr 27 #Python
python中yaml配置文件模块的使用详解
Apr 27 #Python
python 拷贝特定后缀名文件,并保留原始目录结构的实例
Apr 27 #Python
python中subprocess批量执行linux命令
Apr 27 #Python
python复制文件到指定目录的实例
Apr 27 #Python
You might like
PHP Header用于页面跳转要注意的几个问题总结
2008/10/03 PHP
ThinkPHP连接数据库及主从数据库的设置教程
2014/08/22 PHP
php数组中删除元素之重新索引的方法
2014/09/16 PHP
Laravel 5.1 on SAE环境开发教程【附项目demo源码】
2016/10/09 PHP
php版微信小店调用api示例代码
2016/11/12 PHP
CI框架AR数据库操作常用函数总结
2016/11/21 PHP
PHP网站自动化配置的实现方法(必看)
2017/05/27 PHP
关于flash遮盖div浮动层的解决方法
2010/07/17 Javascript
40个新鲜出炉的jQuery 插件和免费教程[上]
2012/07/24 Javascript
js复制网页内容并兼容各主流浏览器的代码
2013/12/17 Javascript
加随机数引入脚本不让浏览器读取缓存
2014/09/04 Javascript
javascript元素动态创建实现方法
2015/05/13 Javascript
JS组件Bootstrap Table表格行拖拽效果实现代码
2020/08/27 Javascript
javascript删除html标签函数cIsHTML
2017/01/09 Javascript
利用js定义一个导航条菜单
2017/03/14 Javascript
初探JavaScript 面向对象(推荐)
2017/09/03 Javascript
vue路由事件beforeRouteLeave及组件内定时器的清除方法
2018/09/29 Javascript
socket io与vue-cli的结合使用的示例代码
2018/11/01 Javascript
Vuex新手的理解与使用详解
2019/05/31 Javascript
layer.msg()去掉默认时间,实现手动关闭的方法
2019/09/12 Javascript
利用python微信库itchat实现微信自动回复功能
2017/05/18 Python
scrapy爬虫完整实例
2018/01/25 Python
Python3.5基础之变量、数据结构、条件和循环语句、break与continue语句实例详解
2019/04/26 Python
Python正则表达式匹配和提取IP地址
2019/06/06 Python
使用pytorch实现可视化中间层的结果
2019/12/30 Python
详解Pycharm安装及Django安装配置指南
2020/09/15 Python
与世界上最好的跑步专业品牌合作:Fleet Feet
2019/03/22 全球购物
Abbott Lyon官网:女士手表、珠宝及配件
2020/12/26 全球购物
自荐书4要点
2014/01/25 职场文书
运动会演讲稿
2014/05/07 职场文书
小组名称和口号
2014/06/09 职场文书
基督教追悼会答谢词
2015/09/29 职场文书
公务员的复习计划书,请收下!
2019/07/15 职场文书
【海涛七七解说】DCG第二周:DK VS 天禄
2022/04/01 DOTA
怎么禁用Win11输入法 最新Win11输入法关闭教程
2022/08/05 数码科技
Centos7 Shell编程之正则表达式、文本处理工具详解
2022/08/05 Servers