python数字图像处理之骨架提取与分水岭算法


Posted in Python onApril 27, 2018

骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内。

1、骨架提取

骨架提取,也叫二值图像细化。这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示。

morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数。我们先来看Skeletonize()函数。

格式为:skimage.morphology.skeletonize(image)

输入和输出都是一幅二值图像。

例1:

from skimage import morphology,draw
import numpy as np
import matplotlib.pyplot as plt

#创建一个二值图像用于测试
image = np.zeros((400, 400))

#生成目标对象1(白色U型)
image[10:-10, 10:100] = 1
image[-100:-10, 10:-10] = 1
image[10:-10, -100:-10] = 1

#生成目标对象2(X型)
rs, cs = draw.line(250, 150, 10, 280)
for i in range(10):
 image[rs + i, cs] = 1
rs, cs = draw.line(10, 150, 250, 280)
for i in range(20):
 image[rs + i, cs] = 1

#生成目标对象3(O型)
ir, ic = np.indices(image.shape)
circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2
circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2
image[circle1] = 1
image[circle2] = 0

#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20)

ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20)

fig.tight_layout()
plt.show()

生成一幅测试图像,上面有三个目标对象,分别进行骨架提取,结果如下:

python数字图像处理之骨架提取与分水岭算法

例2:利用系统自带的马图片进行骨架提取

from skimage import morphology,data,color
import matplotlib.pyplot as plt

image=color.rgb2gray(data.horse())
image=1-image #反相
#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('original', fontsize=20)

ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('skeleton', fontsize=20)

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

medial_axis就是中轴的意思,利用中轴变换方法计算前景(1值)目标对象的宽度,格式为:

skimage.morphology.medial_axis(image,mask=None,return_distance=False)

mask: 掩模。默认为None, 如果给定一个掩模,则在掩模内的像素值才执行骨架算法。

return_distance: bool型值,默认为False. 如果为True, 则除了返回骨架,还将距离变换值也同时返回。这里的距离指的是中轴线上的所有点与背景点的距离。

import numpy as np
import scipy.ndimage as ndi
from skimage import morphology
import matplotlib.pyplot as plt

#编写一个函数,生成测试图像
def microstructure(l=256):
 n = 5
 x, y = np.ogrid[0:l, 0:l]
 mask = np.zeros((l, l))
 generator = np.random.RandomState(1)
 points = l * generator.rand(2, n**2)
 mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n))
 return mask > mask.mean()

data = microstructure(l=64) #生成测试图像

#计算中轴和距离变换值
skel, distance =morphology.medial_axis(data, return_distance=True)

#中轴上的点到背景像素点的距离
dist_on_skel = distance * skel

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
#用光谱色显示中轴
ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest')
ax2.contour(data, [0.5], colors='w') #显示轮廓线

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

2、分水岭算法

分水岭在地理学上就是指一个山脊,水通常会沿着山脊的两边流向不同的“汇水盆”。分水岭算法是一种用于图像分割的经典算法,是基于拓扑理论的数学形态学的分割方法。如果图像中的目标物体是连在一起的,则分割起来会更困难,分水岭算法经常用于处理这类问题,通常会取得比较好的效果。

分水岭算法可以和距离变换结合,寻找“汇水盆地”和“分水岭界限”,从而对图像进行分割。二值图像的距离变换就是每一个像素点到最近非零值像素点的距离,我们可以使用scipy包来计算距离变换。

在下面的例子中,需要将两个重叠的圆分开。我们先计算圆上的这些白色像素点到黑色背景像素点的距离变换,选出距离变换中的最大值作为初始标记点(如果是反色的话,则是取最小值),从这些标记点开始的两个汇水盆越集越大,最后相交于分山岭。从分山岭处断开,我们就得到了两个分离的圆。

例1:基于距离变换的分山岭图像分割

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,feature

#创建两个带有重叠圆的图像
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 16, 20
mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2
mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2
image = np.logical_or(mask_circle1, mask_circle2)

#现在我们用分水岭算法分离两个圆
distance = ndi.distance_transform_edt(image) #距离变换
local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)),
       labels=image) #寻找峰值
markers = ndi.label(local_maxi)[0] #初始标记点
labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes

ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
ax1.set_title("Distance")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented")

for ax in axes:
 ax.axis('off')

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

分水岭算法也可以和梯度相结合,来实现图像分割。一般梯度图像在边缘处有较高的像素值,而在其它地方则有较低的像素值,理想情况 下,分山岭恰好在边缘。因此,我们可以根据梯度来寻找分山岭。

例2:基于梯度的分水岭图像分割

import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,color,data,filter

image =color.rgb2gray(data.camera())
denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声

#将梯度值低于10的作为开始标记点
markers = filter.rank.gradient(denoised, morphology.disk(5)) <10
markers = ndi.label(markers)[0]

gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度
labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes

ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax0.set_title("Original")
ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest')
ax1.set_title("Gradient")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest')
ax3.set_title("Segmented")

for ax in axes:
 ax.axis('off')

fig.tight_layout()
plt.show()

python数字图像处理之骨架提取与分水岭算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python写的PHPMyAdmin暴力破解工具代码
Aug 06 Python
在Django框架中编写Contact表单的教程
Jul 17 Python
python进程管理工具supervisor的安装与使用教程
Sep 05 Python
python 中的list和array的不同之处及转换问题
Mar 13 Python
python实现批量解析邮件并下载附件
Jun 19 Python
python批量从es取数据的方法(文档数超过10000)
Dec 27 Python
Django中如何使用sass的方法步骤
Jul 09 Python
pytorch 更改预训练模型网络结构的方法
Aug 19 Python
python cv2.resize函数high和width注意事项说明
Jul 05 Python
python输出结果刷新及进度条的实现操作
Jul 13 Python
python3通过subprocess模块调用脚本并和脚本交互的操作
Dec 05 Python
使用Pytorch实现two-head(多输出)模型的操作
May 28 Python
python多线程之事件Event的使用详解
Apr 27 #Python
python线程池threadpool使用篇
Apr 27 #Python
Python实现删除时保留特定文件夹和文件的示例
Apr 27 #Python
python中yaml配置文件模块的使用详解
Apr 27 #Python
python 拷贝特定后缀名文件,并保留原始目录结构的实例
Apr 27 #Python
python中subprocess批量执行linux命令
Apr 27 #Python
python复制文件到指定目录的实例
Apr 27 #Python
You might like
PHP使用正则表达式获取微博中的话题和对象名
2015/07/18 PHP
使用PHP生成图片的缩略图的方法
2015/08/18 PHP
PHP通过反射动态加载第三方类和获得类源码的实例
2015/11/27 PHP
PHP实现的简单异常处理类示例
2017/05/04 PHP
详解PHP序列化和反序列化原理
2018/01/15 PHP
关于PHP中interface的用处详解
2020/07/26 PHP
jQuery 创建Dom元素
2010/05/07 Javascript
JavaScript(JS) 压缩 / 混淆 / 格式化 批处理工具
2010/12/10 Javascript
Jquery创建层显示标题和内容且随鼠标移动而移动
2014/01/26 Javascript
javascript判断是手机还是电脑访问网页的简单实例分享
2014/06/03 Javascript
jquery实现焦点图片随机切换效果的方法
2015/03/12 Javascript
JS实现Select的option上下移动的方法
2016/03/01 Javascript
js date 格式化
2017/02/15 Javascript
React中ES5与ES6写法的区别总结
2017/04/21 Javascript
javaScript中封装的各种写法示例(推荐)
2017/07/03 Javascript
详解Vue微信公众号开发踩坑全记录
2017/08/21 Javascript
解决vue build打包之后首页白屏的问题
2018/03/06 Javascript
Vue验证码60秒倒计时功能简单实例代码
2018/06/22 Javascript
Vuejs开发环境搭建及热更新【推荐】
2018/09/07 Javascript
基于JavaScript实现十五拼图代码实例
2020/04/26 Javascript
Js数组扁平化实现方法代码总汇
2020/11/11 Javascript
python+selenium打印当前页面的titl和url方法
2018/06/22 Python
Django 实现admin后台显示图片缩略图的例子
2019/07/28 Python
python3 反射的四种基本方法解析
2019/08/26 Python
100行Python代码实现每天不同时间段定时给女友发消息
2019/09/27 Python
Python利用PyExecJS库执行JS函数的案例分析
2019/12/18 Python
简单了解python字符串前面加r,u的含义
2019/12/26 Python
django 数据库返回queryset实现封装为字典
2020/05/19 Python
python 通过exifread读取照片信息
2020/12/24 Python
草莓网英国官网:Strawberrynet UK
2017/02/12 全球购物
英国网络托管和域名领导者:Web Hosting UK
2017/10/15 全球购物
什么是虚拟内存?虚拟内存有什么优势?
2016/02/09 面试题
咨询公司各岗位职责
2013/12/02 职场文书
家长评语怎么写
2014/12/30 职场文书
2015年入党积极分子培养考察意见
2015/08/12 职场文书
2016大学迎新欢迎词
2015/09/29 职场文书