Python中内置数据类型list,tuple,dict,set的区别和用法


Posted in Python onDecember 14, 2015

Python语言简洁明了,可以用较少的代码实现同样的功能。这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set。这里对他们进行一个简明的总结。

List

字面意思就是一个集合,在Python中List中的元素用中括号[]来表示,可以这样定义一个List:

L = [12, 'China', 19.998]

可以看到并不要求元素的类型都是一样的。当然也可以定义一个空的List:

L = []

Python中的List是有序的,所以要访问List的话显然要通过序号来访问,就像是数组的下标一样,一样是下标从0开始:

>>> print L[0]
12

千万不要越界,否则会报错

>>> print L[3]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

List也可以倒序访问,通过“倒数第x个”这样的下标来表示序号,比如-1这个下标就表示倒数第一个元素:

>>> L = [12, 'China', 19.998]
>>> print L[-1]
19.998

-4的话显然就越界了

>>> print L[-4]

Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
  print L[-4]
IndexError: list index out of range
>>>

List通过内置的append()方法来添加到尾部,通过insert()方法添加到指定位置(下标从0开始):

>>> L = [12, 'China', 19.998]
>>> L.append('Jack')
>>> print L
[12, 'China', 19.998, 'Jack']
>>> L.insert(1, 3.14)
>>> print L
[12, 3.14, 'China', 19.998, 'Jack']
>>>

通过pop()删除最后尾部元素,也可以指定一参数删除指定位置:

>>> L.pop()
'Jack'
>>> print L
[12, 3.14, 'China', 19.998]
>>> L.pop(0)
12
>>> print L
[3.14, 'China', 19.998]

也可以通过下标进行复制替换

>>> L[1] = 'America'
>>> print L
[3.14, 'America', 19.998]

Tuple

Tuple可以看做是一种“不变”的List,访问也是通过下标,用小括号()表示:

>>> t = (3.14, 'China', 'Jason')
>>> print t
(3.14, 'China', 'Jason')

但是不能重新赋值替换:

>>> t[1] = 'America'

Traceback (most recent call last):
 File "<pyshell#21>", line 1, in <module>
  t[1] = 'America'
TypeError: 'tuple' object does not support item assignment

也没有pop和insert、append方法。

可以创建空元素的tuple:

t = ()
或者单元素tuple (比如加一个逗号防止和声明一个整形歧义):

t = (3.14,)

那么tuple这个类型到底有什么用处呢?要知道如果你希望一个函数返回多个返回值,其实只要返回一个tuple就可以了,因为tuple里面的含有多个值,而且是不可变的(就像是java里面的final)。当然,tuple也是可变的,比如:

>>> t = (3.14, 'China', 'Jason', ['A', 'B'])
>>> print t
(3.14, 'China', 'Jason', ['A', 'B'])
>>> L = t[3]
>>> L[0] = 122
>>> L[1] = 233
>>> print t
(3.14, 'China', 'Jason', [122, 233])

这是因为Tuple所谓的不可变指的是指向的位置不可变,因为本例子中第四个元素并不是基本类型,而是一个List类型,所以t指向的该List的位置是不变的,但是List本身的内容是可以变化的,因为List本身在内存中的分配并不是连续的。

Dict

Dict是Python中非常重要的数据类型,就像它的字面意思一样,它是个活字典,其实就是Key-Value键值对,类似于HashMap,可以用花括号{}通过类似于定义一个C语言的结构体那样去定义它:

>>> d = {
  'Adam': 95,
  'Lisa': 85,
  'Bart': 59,
  'Paul': 75
}
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}

可以看到打印出来的结果都是Key:Value的格式,可以通过len函数计算它的长度(List,tuple也可以):

>>> len(d)
4

可以直接通过键值对方式添加dict中的元素:

>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
>>> d['Jone'] = 99
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}

List和Tuple用下标来访问内容,而Dict用Key来访问: (字符串、整型、浮点型和元组tuple都可以作为dict的key)

>>> print d['Adam']
95

如果Key不存在,会报错:

>>> print d['Jack']

Traceback (most recent call last):
 File "<pyshell#40>", line 1, in <module>
  print d['Jack']
KeyError: 'Jack'

所以访问之前最好先查询下key是否存在:

>>> if 'Adam' in d : print 'exist key'

exist key

或者直接用保险的get方法:

>>> print d.get('Adam')
95
>>> print d.get('Jason')
None

至于遍历一个dict,实际上是在遍历它的所有的Key的集合,然后用这个Key来获得对应的Value:

>>> for key in d : print key, ':', d.get(key)

Lisa : 85
Paul : 75
Adam : 95
Bart : 59

Dict具有一些特点:

查找速度快。无论是10个还是10万个,速度都是一样的,但是代价是耗费的内存大。List相反,占用内存小,但是查找速度慢。这就好比是数组和链表的区别,数组并不知道要开辟多少空间,所以往往开始就会开辟一个大空间,但是直接通过下标查找速度快;而链表占用的空间小,但是查找的时候必须顺序的遍历导致速度很慢
没有顺序。Dict是无顺序的,而List是有序的集合,所以不能用Dict来存储有序集合
Key不可变,Value可变。一旦一个键值对加入dict后,它对应的key就不能再变了,但是Value是可以变化的。所以List不可以当做Dict的Key,但是可以作为Value:

>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
>>> d['NewList'] = [12, 23, 'Jack']
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}

Key不可重复。(下面例子中添加了一个'Jone':0,但是实际上原来已经有'Jone'这个Key了,所以仅仅是改了原来的value)

>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
>>> d['Jone'] = 0
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 0, 'Lisa': 85, 'Paul': 75}

Dict的合并,如何将两个Dict合并为一个,可以用dict函数:

>>> d1 = {'mike':12, 'jack':19}
>>> d2 = {'jone':22, 'ivy':17}
>>> dMerge = dict(d1.items() + d2.items())
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

或者

>>> dMerge2 = dict(d1, **d2)
>>> print dMerge2
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

方法2比方法1速度快很多,方法2等同于:

>>> dMerge3 = dict(d1)
>>> dMerge3.update(d2)
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

set

set就像是把Dict中的key抽出来了一样,类似于一个List,但是内容又不能重复,通过调用set()方法创建:

>>> s = set(['A', 'B', 'C'])
就像dict是无序的一样,set也是无序的,也不能包含重复的元素。

对于访问一个set的意义就仅仅在于查看某个元素是否在这个集合里面:

>>> print 'A' in s
True
>>> print 'D' in s
False

大小写是敏感的。

也通过for来遍历:

s = set([('Adam', 95), ('Lisa', 85), ('Bart', 59)])
#tuple
for x in s:
  print x[0],':',x[1]

>>>
Lisa : 85
Adam : 95
Bart : 59

通过add和remove来添加、删除元素(保持不重复),添加元素时,用set的add()方法:

>>> s = set([1, 2, 3])
>>> s.add(4)
>>> print s
set([1, 2, 3, 4])

如果添加的元素已经存在于set中,add()不会报错,但是不会加进去了:

>>> s = set([1, 2, 3])
>>> s.add(3)
>>> print s
set([1, 2, 3])

删除set中的元素时,用set的remove()方法:

>>> s = set([1, 2, 3, 4])
>>> s.remove(4)
>>> print s
set([1, 2, 3])

如果删除的元素不存在set中,remove()会报错:

>>> s = set([1, 2, 3])
>>> s.remove(4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 4

所以如果我们要判断一个元素是否在一些不同的条件内符合,用set是最好的选择,下面例子:

months = set(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec',])
x1 = 'Feb'
x2 = 'Sun'

if x1 in months:
  print 'x1: ok'
else:
  print 'x1: error'

if x2 in months:
  print 'x2: ok'
else:
  print 'x2: error'

>>>
x1: ok
x2: error
Python 相关文章推荐
python实现在无须过多援引的情况下创建字典的方法
Sep 25 Python
Python+微信接口实现运维报警
Aug 27 Python
python开发利器之ulipad的使用实践
Mar 16 Python
Python实现破解12306图片验证码的方法分析
Dec 29 Python
python实现简单名片管理系统
Nov 30 Python
Python 使用folium绘制leaflet地图的实现方法
Jul 05 Python
Python enumerate() 函数如何实现索引功能
Jun 29 Python
Python 如何调试程序崩溃错误
Aug 03 Python
Django contrib auth authenticate函数源码解析
Nov 12 Python
Python实现淘宝秒杀功能的示例代码
Jan 19 Python
pycharm配置python 设置pip安装源为豆瓣源
Feb 05 Python
Python djanjo之csrf防跨站攻击实验过程
May 14 Python
分享Python字符串关键点
Dec 13 #Python
Python实时获取cmd的输出
Dec 13 #Python
一篇文章入门Python生态系统(Python新手入门指导)
Dec 11 #Python
深入源码解析Python中的对象与类型
Dec 11 #Python
Python实现各种排序算法的代码示例总结
Dec 11 #Python
Python操作MySQL数据库9个实用实例
Dec 11 #Python
使用Python编写简单的画图板程序的示例教程
Dec 08 #Python
You might like
php 大数据量及海量数据处理算法总结
2011/05/07 PHP
实现PHP多线程异步请求的3种方法
2014/01/17 PHP
php获取文件大小的方法
2014/02/26 PHP
深入理解php printf() 输出格式化的字符串
2016/05/23 PHP
PHP异步进程助手async-helper
2018/02/05 PHP
Laravel关联模型中过滤结果为空的结果集(has和with区别)
2018/10/18 PHP
javascript写的简单的计算器,内容很多,方法实用,推荐
2011/12/29 Javascript
javascript针对DOM的应用分析(二)
2012/04/15 Javascript
一个简单的实现下拉框多选的插件可移植性比较好
2014/05/05 Javascript
在JavaScript中使用NaN值的方法
2015/06/05 Javascript
javascript中tostring()和valueof()的用法及两者的区别
2015/11/16 Javascript
js实现密码强度检测【附示例】
2016/03/30 Javascript
理解javascript中的闭包
2017/01/11 Javascript
详解Javascript百度地图接口开发文档中的类和方法
2017/02/07 Javascript
vue元素实现动画过渡效果
2017/07/01 Javascript
基于js粘贴事件paste简单解析以及遇到的坑
2017/09/07 Javascript
javascript与PHP动态往类中添加方法对比
2018/03/21 Javascript
vue-cli项目中使用Mockjs详解
2018/05/14 Javascript
React SSR样式及SEO的实践
2018/10/22 Javascript
详解Vue2 添加对scss的支持
2019/01/02 Javascript
微信小程序 调用微信授权窗口相关问题解决
2019/07/25 Javascript
axios封装与传参示例详解
2020/10/18 Javascript
Python中的类学习笔记
2014/09/23 Python
Flask框架URL管理操作示例【基于@app.route】
2018/07/23 Python
解决win7操作系统Python3.7.1安装后启动提示缺少.dll文件问题
2019/07/15 Python
在python中用print()输出多个格式化参数的方法
2019/07/16 Python
Python input函数使用实例解析
2019/11/22 Python
高级销售员求职信
2013/10/25 职场文书
甲方资料员岗位职责
2013/12/13 职场文书
清洁工岗位职责
2014/01/29 职场文书
最常使用的求职信
2014/05/25 职场文书
品牌推广活动策划方案
2014/08/19 职场文书
干部对照检查材料范文
2014/08/26 职场文书
大学毕业典礼演讲稿
2014/09/09 职场文书
2014年质量工作总结
2014/11/22 职场文书
前端传参数进行Mybatis调用mysql存储过程执行返回值详解
2022/08/14 MySQL