Python中内置数据类型list,tuple,dict,set的区别和用法


Posted in Python onDecember 14, 2015

Python语言简洁明了,可以用较少的代码实现同样的功能。这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set。这里对他们进行一个简明的总结。

List

字面意思就是一个集合,在Python中List中的元素用中括号[]来表示,可以这样定义一个List:

L = [12, 'China', 19.998]

可以看到并不要求元素的类型都是一样的。当然也可以定义一个空的List:

L = []

Python中的List是有序的,所以要访问List的话显然要通过序号来访问,就像是数组的下标一样,一样是下标从0开始:

>>> print L[0]
12

千万不要越界,否则会报错

>>> print L[3]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

List也可以倒序访问,通过“倒数第x个”这样的下标来表示序号,比如-1这个下标就表示倒数第一个元素:

>>> L = [12, 'China', 19.998]
>>> print L[-1]
19.998

-4的话显然就越界了

>>> print L[-4]

Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
  print L[-4]
IndexError: list index out of range
>>>

List通过内置的append()方法来添加到尾部,通过insert()方法添加到指定位置(下标从0开始):

>>> L = [12, 'China', 19.998]
>>> L.append('Jack')
>>> print L
[12, 'China', 19.998, 'Jack']
>>> L.insert(1, 3.14)
>>> print L
[12, 3.14, 'China', 19.998, 'Jack']
>>>

通过pop()删除最后尾部元素,也可以指定一参数删除指定位置:

>>> L.pop()
'Jack'
>>> print L
[12, 3.14, 'China', 19.998]
>>> L.pop(0)
12
>>> print L
[3.14, 'China', 19.998]

也可以通过下标进行复制替换

>>> L[1] = 'America'
>>> print L
[3.14, 'America', 19.998]

Tuple

Tuple可以看做是一种“不变”的List,访问也是通过下标,用小括号()表示:

>>> t = (3.14, 'China', 'Jason')
>>> print t
(3.14, 'China', 'Jason')

但是不能重新赋值替换:

>>> t[1] = 'America'

Traceback (most recent call last):
 File "<pyshell#21>", line 1, in <module>
  t[1] = 'America'
TypeError: 'tuple' object does not support item assignment

也没有pop和insert、append方法。

可以创建空元素的tuple:

t = ()
或者单元素tuple (比如加一个逗号防止和声明一个整形歧义):

t = (3.14,)

那么tuple这个类型到底有什么用处呢?要知道如果你希望一个函数返回多个返回值,其实只要返回一个tuple就可以了,因为tuple里面的含有多个值,而且是不可变的(就像是java里面的final)。当然,tuple也是可变的,比如:

>>> t = (3.14, 'China', 'Jason', ['A', 'B'])
>>> print t
(3.14, 'China', 'Jason', ['A', 'B'])
>>> L = t[3]
>>> L[0] = 122
>>> L[1] = 233
>>> print t
(3.14, 'China', 'Jason', [122, 233])

这是因为Tuple所谓的不可变指的是指向的位置不可变,因为本例子中第四个元素并不是基本类型,而是一个List类型,所以t指向的该List的位置是不变的,但是List本身的内容是可以变化的,因为List本身在内存中的分配并不是连续的。

Dict

Dict是Python中非常重要的数据类型,就像它的字面意思一样,它是个活字典,其实就是Key-Value键值对,类似于HashMap,可以用花括号{}通过类似于定义一个C语言的结构体那样去定义它:

>>> d = {
  'Adam': 95,
  'Lisa': 85,
  'Bart': 59,
  'Paul': 75
}
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}

可以看到打印出来的结果都是Key:Value的格式,可以通过len函数计算它的长度(List,tuple也可以):

>>> len(d)
4

可以直接通过键值对方式添加dict中的元素:

>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
>>> d['Jone'] = 99
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}

List和Tuple用下标来访问内容,而Dict用Key来访问: (字符串、整型、浮点型和元组tuple都可以作为dict的key)

>>> print d['Adam']
95

如果Key不存在,会报错:

>>> print d['Jack']

Traceback (most recent call last):
 File "<pyshell#40>", line 1, in <module>
  print d['Jack']
KeyError: 'Jack'

所以访问之前最好先查询下key是否存在:

>>> if 'Adam' in d : print 'exist key'

exist key

或者直接用保险的get方法:

>>> print d.get('Adam')
95
>>> print d.get('Jason')
None

至于遍历一个dict,实际上是在遍历它的所有的Key的集合,然后用这个Key来获得对应的Value:

>>> for key in d : print key, ':', d.get(key)

Lisa : 85
Paul : 75
Adam : 95
Bart : 59

Dict具有一些特点:

查找速度快。无论是10个还是10万个,速度都是一样的,但是代价是耗费的内存大。List相反,占用内存小,但是查找速度慢。这就好比是数组和链表的区别,数组并不知道要开辟多少空间,所以往往开始就会开辟一个大空间,但是直接通过下标查找速度快;而链表占用的空间小,但是查找的时候必须顺序的遍历导致速度很慢
没有顺序。Dict是无顺序的,而List是有序的集合,所以不能用Dict来存储有序集合
Key不可变,Value可变。一旦一个键值对加入dict后,它对应的key就不能再变了,但是Value是可以变化的。所以List不可以当做Dict的Key,但是可以作为Value:

>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
>>> d['NewList'] = [12, 23, 'Jack']
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}

Key不可重复。(下面例子中添加了一个'Jone':0,但是实际上原来已经有'Jone'这个Key了,所以仅仅是改了原来的value)

>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
>>> d['Jone'] = 0
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 0, 'Lisa': 85, 'Paul': 75}

Dict的合并,如何将两个Dict合并为一个,可以用dict函数:

>>> d1 = {'mike':12, 'jack':19}
>>> d2 = {'jone':22, 'ivy':17}
>>> dMerge = dict(d1.items() + d2.items())
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

或者

>>> dMerge2 = dict(d1, **d2)
>>> print dMerge2
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

方法2比方法1速度快很多,方法2等同于:

>>> dMerge3 = dict(d1)
>>> dMerge3.update(d2)
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

set

set就像是把Dict中的key抽出来了一样,类似于一个List,但是内容又不能重复,通过调用set()方法创建:

>>> s = set(['A', 'B', 'C'])
就像dict是无序的一样,set也是无序的,也不能包含重复的元素。

对于访问一个set的意义就仅仅在于查看某个元素是否在这个集合里面:

>>> print 'A' in s
True
>>> print 'D' in s
False

大小写是敏感的。

也通过for来遍历:

s = set([('Adam', 95), ('Lisa', 85), ('Bart', 59)])
#tuple
for x in s:
  print x[0],':',x[1]

>>>
Lisa : 85
Adam : 95
Bart : 59

通过add和remove来添加、删除元素(保持不重复),添加元素时,用set的add()方法:

>>> s = set([1, 2, 3])
>>> s.add(4)
>>> print s
set([1, 2, 3, 4])

如果添加的元素已经存在于set中,add()不会报错,但是不会加进去了:

>>> s = set([1, 2, 3])
>>> s.add(3)
>>> print s
set([1, 2, 3])

删除set中的元素时,用set的remove()方法:

>>> s = set([1, 2, 3, 4])
>>> s.remove(4)
>>> print s
set([1, 2, 3])

如果删除的元素不存在set中,remove()会报错:

>>> s = set([1, 2, 3])
>>> s.remove(4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 4

所以如果我们要判断一个元素是否在一些不同的条件内符合,用set是最好的选择,下面例子:

months = set(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec',])
x1 = 'Feb'
x2 = 'Sun'

if x1 in months:
  print 'x1: ok'
else:
  print 'x1: error'

if x2 in months:
  print 'x2: ok'
else:
  print 'x2: error'

>>>
x1: ok
x2: error
Python 相关文章推荐
python重试装饰器示例
Feb 11 Python
python按照多个字符对字符串进行分割的方法
Mar 17 Python
Python OS模块常用函数说明
May 23 Python
TensorFlow模型保存/载入的两种方法
Mar 08 Python
python生成以及打开json、csv和txt文件的实例
Nov 16 Python
Python基于opencv调用摄像头获取个人图片的实现方法
Feb 21 Python
详解Python3 基本数据类型
Apr 19 Python
django drf框架自带的路由及最简化的视图
Sep 10 Python
python 实现查询Neo4j多节点的多层关系
Dec 23 Python
解决pyecharts运行后产生的html文件用浏览器打开空白
Mar 11 Python
使用Keras建立模型并训练等一系列操作方式
Jul 02 Python
使用python对excel表格处理的一些小功能
Jan 25 Python
分享Python字符串关键点
Dec 13 #Python
Python实时获取cmd的输出
Dec 13 #Python
一篇文章入门Python生态系统(Python新手入门指导)
Dec 11 #Python
深入源码解析Python中的对象与类型
Dec 11 #Python
Python实现各种排序算法的代码示例总结
Dec 11 #Python
Python操作MySQL数据库9个实用实例
Dec 11 #Python
使用Python编写简单的画图板程序的示例教程
Dec 08 #Python
You might like
精致的人儿就要挑杯子喝咖啡
2021/03/03 冲泡冲煮
Thinkphp中Create方法深入探究
2014/06/16 PHP
PHP通过串口实现发送短信
2015/07/08 PHP
浅谈PHP的exec()函数无返回值排查方法(必看)
2017/03/31 PHP
Laravel框架路由管理简单示例
2019/05/07 PHP
js中的时间转换—毫秒转换成日期时间的示例代码
2014/01/26 Javascript
JSP中使用JavaScript动态插入删除输入框实现代码
2014/06/13 Javascript
window.location的重写及判断location是否被重写
2014/09/04 Javascript
jQuery中val()方法用法实例
2014/12/25 Javascript
Javascript中call和apply函数的比较和使用实例
2015/02/03 Javascript
高性能JavaScript循环语句和条件语句
2016/01/20 Javascript
探讨:JavaScript ECAMScript5 新特性之get/set访问器
2016/05/05 Javascript
NodeJS中的MongoDB快速入门详细教程
2016/11/11 NodeJs
Bootstrap实现带暂停功能的轮播组件(推荐)
2016/11/25 Javascript
微信小程序开发之麦克风动画 帧动画 放大 淡出
2017/04/18 Javascript
详解vue组件通信的三种方式
2017/06/30 Javascript
jQuery简介_动力节点Java学院整理
2017/07/04 jQuery
vue-video-player 通过自定义按钮组件实现全屏切换效果【推荐】
2018/08/29 Javascript
[46:55]完美世界DOTA2联赛决赛 FTD vs Phoenix 第三场 11.08
2020/11/11 DOTA
Python的Django中django-userena组件的简单使用教程
2015/05/30 Python
Django数据库表反向生成实例解析
2018/02/06 Python
django项目用higcharts统计最近七天文章点击量
2019/08/17 Python
Django之编辑时根据条件跳转回原页面的方法
2019/08/21 Python
Python3爬虫中关于中文分词的详解
2020/07/29 Python
cookies应对python反爬虫知识点详解
2020/11/25 Python
使用CSS3来制作消息提醒框
2015/07/12 HTML / CSS
学校十一活动方案
2014/02/01 职场文书
接待员岗位责任制
2014/02/10 职场文书
护士岗位职责
2014/02/16 职场文书
书香校园活动方案
2014/02/28 职场文书
一帮一活动总结
2014/05/08 职场文书
营销团队口号
2014/06/06 职场文书
服务行业演讲稿
2014/09/02 职场文书
党员学习新党章思想汇报
2014/10/25 职场文书
2015年幼儿园师德师风建设工作总结
2015/10/23 职场文书
Python几种酷炫的进度条的方式
2022/04/11 Python