深入解析NumPy中的Broadcasting广播机制


Posted in Python onMay 30, 2021

前言

在吴恩达老师的深度学习专项课程中,老师有提到NumPy中的广播机制,同时那一周的测验也有涉及到广播机制的题目。那么,到底什么是NumPy中的广播机制?

官方文档

接下来到了看官方文档的时间。

Array Broadcasting in Numpy

广播机制概述

让我们探索numpy中一个更高级的概念,这个概念被称为广播。 广播展现了NumPy在算术运算期间是如何处理具有不同形状的数组的。 受到某些约束,较小的阵列将在较大的阵列上“广播”,以使它们具有相同形状。 广播提供了一种数组矢量化操作,从而使得循环在C而不是Python中发生。 它无需复制不必要的数据即可完成,并且通常算法的效率还挺高。 当然在某些情况下,广播并不是一个好办法,因为它会导致内存使用效率低,从而减慢计算速度。 本文通过示例,对广播进行了详尽的介绍。 它还提供何时使用广播的提示。

numpy操作通常是逐个元素完成的,这就需要两个数组具有完全相同的形状

Example 1

>>> from numpy import array
>>> a = array([1.0, 2.0, 3.0])
>>> b = array([2.0, 2.0, 2.0])
>>> a * b
array([ 2.,  4.,  6.])

当数组的形状满足某些条件时,numpy的广播规则将放宽这种数组限制。 将数组和标量值在一起运算时,会出现最简单的广播示例

Example 2

>>> from numpy import array
>>> a = array([1.0,2.0,3.0])
>>> b = 2.0
>>> a * b
array([ 2.,  4.,  6.])

尽管只有一个变量是数组,但是结果和之前的一个代码例子是一样的。 我们可以认为其中的标量在算术运算中被拓展成与数组a变量形状相同的数组。 例如下图中显示的中拓展的新元素只是原始标量的副本。这种拓展只是概念上的。 numpy的明智之处在于使用原始标量值而不必要创建副本,从而使广播操作尽可能地节省内存提高计算效率。 由于上面的代码例子中,乘法过程中标量移动的内存较少,所以在具有一百万个元素数组的Windows 2000上,广播机制与之前的两个数组相加相比大概快10%。

深入解析NumPy中的Broadcasting广播机制

在最简单的广播示例中,标量b被拉伸为与a相同形状的数组,使得这些形状适用于逐元素乘法。

下面的规则决定了两个具有兼容形状的数组是否可以在单个代码段中进行广播。

广播机制规则

广播规则

为了广播,操作中两个阵列的尾轴的大小必须相同,或者其中一个必须是一个。

问题来了,尾轴是什么?

为此我找到了python - numpy broadcasting - explanation of trailing axes - Stack Overflow这篇解答。

If you have two arrays with different dimensions number, say one 1x2x3 and other 2x3, then you compare only the trailing common dimensions, in this case 2x3. But if both your arrays are two-dimensional, then their corresponding sizes have to be either equal or one of them has to be 1.

In your case you have a 2x2 and 4x2 and 4 != 2 and neither 4 or 2 equals 1, so this doesn't work.

假设你有两个不同维度的数组。一个是1x2x3,另一个是2x3,那么只需要比较后面的公共尺寸,在这种情况下为2x3。 但是,**如果两个数组都是二维的,则它们的对应大小必须相等或其中之一必须为1 **。

在两个二维数组中2x2和4x2,4!= 2,并且4或2都不等于1,所以广播行不通的。

这个解释应该比较清楚了。

如果不满足此条件,则会引发异常,提示数组的形状不兼容。 广播操作创建的结果数组的大小是两个数组中每个维度的最大大小。 请注意,该规则并未说明需要具有相同维数的两个数组。 如果有一个256 x 256 x 3的RGB值数组,想要按不同的值缩放图像中的每种颜色,则可以将图像乘以具有3个值的一维数组。

 

Image (3d array) 256 x 256 x 3
Scale (1d array)     3
Result (3d array) 256 x 256 x 3

在下面的示例中,两个数组都具有长度为1的轴,这些轴在广播操作中被扩展为更大的大小。

 

A (4d array) 8 x 1 x 6 x 1
B (3d array)   7 x 1 x 5
Result (4d array) 8 x 7 x 6 x 5

下面,是几个代码例子和图形表示,有助于使广播规则直观明了。例3将一个一维数组添加到一个二维数组。

Example 3

>>> from numpy import array
>>> a = array([[ 0.0,  0.0,  0.0],
...            [10.0, 10.0, 10.0],
...            [20.0, 20.0, 20.0],
...            [30.0, 30.0, 30.0]])
>>> b = array([1.0, 2.0, 3.0])
>>> a + b
array([[  1.,   2.,   3.],
       [ 11.,  12.,  13.],
       [ 21.,  22.,  23.],
       [ 31.,  32.,  33.]])

如下图2所示,b将拓展维度大小和a一样。在图3中,当b的列维度大于a的时,由于形状不兼容而引发异常。

深入解析NumPy中的Broadcasting广播机制

如果一维数组元素的数量与二维数组列的数量匹配,则将二维数组乘以一维数组将导致广播。

当数组的尾部不相等时,广播将失败,因为无法将第一个数组的行中的值与第二个数组的元素对齐进行逐元素加法。

深入解析NumPy中的Broadcasting广播机制

广播提供了一种获取两个数组的外部乘积(或任何其他外部操作)的便捷方法。 下面的示例显示两个1维数组的外部加法运算,其结果与示例3相同。

Example 4

>>> from numpy import array, newaxis
>>> a = array([0.0, 10.0, 20.0, 30.0])
>>> b = array([1.0, 2.0, 3.0])
>>> a[:,newaxis] + b
array([[  1.,   2.,   3.],
       [ 11.,  12.,  13.],
       [ 21.,  22.,  23.],
       [ 31.,  32.,  33.]])

在这里,newaxis索引运算符将一个新轴插入,使其成为二维4x1数组。 图4说明了两个阵列的拉伸以产生所需的4x3输出阵列。

在这里例子里是b = array([1.0, 2.0, 3.0]),但是下图中是0,1,2,emmmm…尊重原文吧!

深入解析NumPy中的Broadcasting广播机制

在某些情况下,广播会拉伸两个阵列以形成一个比任何一个初始阵列都大的输出阵列。

总结

以上是对官方文档的翻译,总的来说广播机制主要是以下几点:

  • 效率较快,性能较好
  • 广播时,操作中两个数组的尾轴的大小必须相同,或者其中之一必须是1
  • 如果两个数组都是二维的,则它们的对应大小必须相等或其中之一必须为1

通过这篇文章,你是否了解了NumPy的广播机制呢?更多相关NumPy Broadcasting广播机制内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python单元测试框架unittest简明使用实例
Apr 13 Python
python去除所有html标签的方法
May 05 Python
python清除字符串里非数字字符的方法
Jul 02 Python
Python实现一个Git日志统计分析的小工具
Dec 14 Python
Python使用Scrapy保存控制台信息到文本解析
Dec 27 Python
Django学习教程之静态文件的调用详解
May 08 Python
深入理解Python异常处理的哲学
Feb 01 Python
python flask解析json数据不完整的解决方法
May 26 Python
Python 3.6 -win64环境安装PIL模块的教程
Jun 20 Python
python入门之基础语法学习笔记
Feb 08 Python
快速解决pymongo操作mongodb的时区问题
Dec 05 Python
Python中非常使用的6种基本变量的操作与技巧
Mar 22 Python
python必学知识之文件操作(建议收藏)
Python使用Kubernetes API访问集群
如何利用pygame实现打飞机小游戏
Python中requests做接口测试的方法
python关于集合的知识案例详解
May 30 #Python
教你漂亮打印Pandas DataFrames和Series
pytorch 实现多个Dataloader同时训练
You might like
Linux下实现PHP多进程的方法分享
2012/08/16 PHP
thinkphp视图模型查询提示ERR: 1146:Table 'db.pr_order_view' doesn't exist的解决方法
2014/10/30 PHP
PHP输出一个等腰三角形的方法
2015/05/12 PHP
PHP7匿名类的用法示例
2019/04/05 PHP
ThinkPHP3.2框架操作Redis的方法分析
2019/05/05 PHP
用jquery来定位
2007/02/20 Javascript
建议大家看下JavaScript重要知识更新
2007/07/08 Javascript
输入自动提示搜索提示功能的javascript:sugggestion.js
2013/09/02 Javascript
js读取json的两种常用方法示例介绍
2014/10/19 Javascript
JsRender for object语法简介
2014/10/31 Javascript
js实现n秒倒计时后才可以点击的效果
2015/12/20 Javascript
Node.js包管理器Yarn的入门介绍与安装
2016/10/17 Javascript
微信小程序中页面FOR循环和嵌套循环
2017/06/21 Javascript
6行代码实现微信小程序页面返回顶部效果
2018/12/28 Javascript
基于Koa(nodejs框架)对json文件进行增删改查的示例代码
2019/02/02 NodeJs
微信小程序云开发修改云数据库中的数据方法
2019/05/18 Javascript
JS实现页面跳转与刷新的方法汇总
2019/08/30 Javascript
electron-vue开发环境内存泄漏问题汇总
2019/10/10 Javascript
Vue.js组件使用props传递数据的方法
2019/10/19 Javascript
Vue获取页面元素的相对位置的方法示例
2020/02/05 Javascript
[55:25]VGJ.T vs Optic Supermajor小组赛D组 BO3 第三场 6.3
2018/06/04 DOTA
[01:36]极致酷炫!TI9典藏宝瓶+撼地者至宝展示
2019/06/11 DOTA
利用Python的Flask框架来构建一个简单的数字商品支付解决方案
2015/03/31 Python
Python的“二维”字典 (two-dimension dictionary)定义与实现方法
2016/04/27 Python
Python3使用requests登录人人影视网站的方法
2016/05/11 Python
Python利用带权重随机数解决抽奖和游戏爆装备问题
2016/06/16 Python
django定期执行任务(实例讲解)
2017/11/03 Python
Python2包含中文报错的解决方法
2018/07/09 Python
python画柱状图--不同颜色并显示数值的方法
2018/12/13 Python
python输出数组中指定元素的所有索引示例
2019/12/06 Python
pip安装tensorflow的坑的解决
2020/04/19 Python
Python 操作 MySQL数据库
2020/09/18 Python
Annoushka英国官网:英国奢侈珠宝品牌
2018/10/20 全球购物
Shop Apotheke瑞士:您的健康与美容网上商店
2019/10/09 全球购物
VICHY薇姿俄罗斯官方网上商店:法国护肤品牌,火山温泉水
2019/11/22 全球购物
win11自动弹出虚拟键盘怎么关闭? Win11关闭虚拟键盘的技巧
2023/01/09 数码科技