Python图像处理之膨胀与腐蚀的操作


Posted in Python onFebruary 07, 2021

引言

膨胀与腐蚀是图像处理中两种最基本的形态学操作,膨胀将目标点融合到背景中,向外部扩展,腐蚀与膨胀意义相反,消除连通的边界,使边界向内收缩。在本文中我们将了解使用内核的图像膨胀与腐蚀的基本原理。

让我们开始吧,同样我们需要导入必需的库。

import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.draw import circle
from skimage.morphology import erosion, dilation

首先让我们创建一个容易操作的形状--一个简单的圆。

circ_image = np.zeros((100, 100))
circ_image[circle(50, 50, 25)] = 1
imshow(circ_image);

Python图像处理之膨胀与腐蚀的操作

现在让我们定义一个内核。

cross = np.array([[0,1,0],
   [1,1,1],
   [0,1,0]])
imshow(cross, cmap = 'gray');

Python图像处理之膨胀与腐蚀的操作

将腐蚀函数应用到创建的圆上。

eroded_circle = erosion(circ_image, cross)
imshow(eroded_circle);

Python图像处理之膨胀与腐蚀的操作

图像看起来几乎一模一样。要看到那些微小的差异,我们必须仔细查看图像。

linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(eroded_circle, cmap = 'gray');
ax[1].set_title('Eroded', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

我们可以看到,被腐蚀的圆已经略微缩小了。这就是腐蚀一个对象的意义。如果我们对腐蚀函数进行迭代,它的效果会变得非常明显。

def multi_erosion(image, kernel, iterations):
 for i in range(iterations):
 image = erosion(image, kernel)
 return image
ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Iterations : {ites[n]}', fontsize = 16)
 new_circle = multi_erosion(circ_image, cross, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

上图清楚地显示了图像是如何被腐蚀的。现在让我们尝试改变内核,如果我们使用水平线和垂直线内核代替交叉内核会怎样呢?

h_line = np.array([[0,0,0],
   [1,1,1],
   [0,0,0]])
v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0]])
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
ax[0].imshow(h_line, cmap='gray');
ax[1].imshow(v_line, cmap='gray');
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

正如我们所看到的,水平和垂直的腐蚀以不同的方式影响着图像。使用水平内核我们得到一个垂直方向细长的圆;而使用垂直内核我们得到一个水平方向细长的圆。

你可能会奇怪,为什么使用垂直内核,会得到一个水平方向细长的圆呢?

因为腐蚀函数是分别寻找垂直和水平的线条,并慢慢把它们削掉。膨胀函数将会让我们更清晰的理解这一点。

使用下面的函数设置处理的图像、膨胀内核以及迭代次数。

def multi_dilation(image, kernel, iterations):
 for i in range(iterations):
 image = dilation(image, kernel)
 return image

让我们看一下处理后的图像有什么不同。

dilated_circle = multi_dilation(circ_image, cross, 1)
linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(dilated_circle, cmap = 'gray');
ax[1].set_title('Dilated', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

可以清楚地看到圆现在已经越过了红线,这清楚地表明它已经扩大了。现在让我们对水平和垂直扩张进行迭代。

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 
   12)
 new_circle = multi_dilation(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_dilation(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

现在可以非常清楚地看到,水平扩张增加了图像宽度,而垂直扩张增加了图像高度。

现在我们已经了解了膨胀与腐蚀的基本原理,下面来看一个相对复杂的图像。

complex_image = imread('complex_image.png')
imshow(complex_image);

Python图像处理之膨胀与腐蚀的操作

在上面的图像中,我们看到了水平线、垂直线和圆的混合物。我们可以使用膨胀和腐蚀函数孤立地观察每一种形状。

为了得到圆,我们可以先腐蚀垂直的线,再腐蚀水平的线。但要记住最后要对图像进行膨胀,因为腐蚀函数同样腐蚀了圆。

step_1 = multi_erosion(complex_image, h_line,3)
step_2 = multi_erosion(step_1, v_line,3)
step_3 = multi_dilation(step_2, h_line,3)
step_4 = multi_dilation(step_3, v_line,3)
steps = [step_1, step_2, step_3, step_4]
names = ['Step 1', 'Step 2', 'Step 3', 'Step 4']
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

同样,下面的代码将得到水平的线。

step_1 = multi_erosion(complex_image, cross, 20)
step_2 = multi_dilation(step_1, h_line, 20)
step_3 = multi_dilation(step_2, v_line,2)
steps = [step_1, step_2, step_3]
names = ['Step 1', 'Step 2', 'Step 3']
fig, ax = plt.subplots(1, 3, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

为了得到垂直的线,我们可以创建一个新的内核。

long_v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0]])
step_1 = multi_erosion(complex_image, long_v_line, 10)
step_2 = multi_dilation(step_1 ,long_v_line, 10)
steps = [step_1, step_2]
names = ['Step 1', 'Step 2']
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

注意,内核并不局限于本文中提到的这几种,可以根据不同的需求自己定义合适的内核。

总结

内核腐蚀和膨胀是图像处理领域需要理解的基本概念。它们甚至可能是任何图像处理模块的第一课。直观地理解它们将是你以后在这个领域成功的关键。

到此这篇关于Python图像处理之膨胀与腐蚀的操作的文章就介绍到这了,更多相关Python图像膨胀与腐蚀内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
django模型中的字段和model名显示为中文小技巧分享
Nov 18 Python
以911新闻为例演示Python实现数据可视化的教程
Apr 23 Python
python编程开发之类型转换convert实例分析
Nov 13 Python
Python2.7读取PDF文件的方法示例
Jul 13 Python
python3解析库BeautifulSoup4的安装配置与基本用法
Jun 26 Python
python 将有序数组转换为二叉树的方法
Mar 26 Python
python分割一个文本为多个文本的方法
Jul 22 Python
tensorflow 报错unitialized value的解决方法
Feb 06 Python
使用pandas库对csv文件进行筛选保存
May 25 Python
python适合做数据挖掘吗
Jun 16 Python
Python用户自定义异常的实现
Dec 25 Python
Python Matplotlib库实现画局部图
Nov 17 Python
django inspectdb 操作已有数据库数据的使用步骤
Feb 07 #Python
python数据抓取3种方法总结
Feb 07 #Python
python 批量将中文名转换为拼音
Feb 07 #Python
如何用用Python将地址标记在地图上
Feb 07 #Python
python 三种方法提取pdf中的图片
Feb 07 #Python
Python 转移文件至云对象存储的方法
Feb 07 #Python
Python调用SMTP服务自动发送Email的实现步骤
Feb 07 #Python
You might like
用PHP生成自己的LOG文件
2006/10/09 PHP
PHP实现数组根据某个单元字段排序操作示例
2018/08/01 PHP
php实现文件上传基本验证
2020/03/04 PHP
jQuery的实现原理的模拟代码 -2 数据部分
2010/08/01 Javascript
js类型检查实现代码
2010/10/29 Javascript
js有关元素内容操作小结
2011/12/20 Javascript
javascript遍历控件实例详细解析
2014/01/10 Javascript
jQuery自定义事件的简单实现代码
2014/01/27 Javascript
JavaScript中实现单体模式分享
2015/01/29 Javascript
javascript实现点击提交按钮后显示loading的方法
2015/07/03 Javascript
javascript实现日期时间动态显示示例代码
2015/09/08 Javascript
React中使用collections时key的重要性详解
2017/08/07 Javascript
Angular利用trackBy提升性能的方法
2018/01/26 Javascript
Node.js中的不安全跳转如何防御详解
2018/10/21 Javascript
爬虫利器Puppeteer实战
2019/01/09 Javascript
详解webpack4.x之搭建前端开发环境
2019/03/28 Javascript
使用typescript构建Vue应用的实现
2019/08/26 Javascript
vue 解决数组赋值无法渲染在页面的问题
2019/10/28 Javascript
在vue中使用axios实现post方式获取二进制流下载文件(实例代码)
2019/12/16 Javascript
JavaScript oncopy事件用法实例解析
2020/05/13 Javascript
JavaScript 判断浏览器是否是IE
2021/02/19 Javascript
如何在Python中实现goto语句的方法
2019/05/18 Python
Python3 串口接收与发送16进制数据包的实例
2019/06/12 Python
Python socket非阻塞模块应用示例
2019/09/12 Python
基于Python绘制美观动态圆环图、饼图
2020/06/03 Python
Python中操作各种多媒体,视频、音频到图片的代码详解
2020/06/04 Python
TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5)
2020/06/22 Python
Html5实现文件异步上传功能
2017/05/19 HTML / CSS
医药类个人求职的自我评价
2014/02/12 职场文书
营销与策划专业求职信
2014/06/20 职场文书
乡镇党建工作汇报材料
2014/10/27 职场文书
2014年小学辅导员工作总结
2014/12/23 职场文书
办公室主任岗位职责
2015/01/31 职场文书
2015年卫生局工作总结
2015/07/24 职场文书
电脑关机速度很慢怎么办 提升电脑关机速度设置教程
2022/04/08 数码科技
Oracle删除归档日志及添加定时任务
2022/06/28 Oracle