Python图像处理之膨胀与腐蚀的操作


Posted in Python onFebruary 07, 2021

引言

膨胀与腐蚀是图像处理中两种最基本的形态学操作,膨胀将目标点融合到背景中,向外部扩展,腐蚀与膨胀意义相反,消除连通的边界,使边界向内收缩。在本文中我们将了解使用内核的图像膨胀与腐蚀的基本原理。

让我们开始吧,同样我们需要导入必需的库。

import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.draw import circle
from skimage.morphology import erosion, dilation

首先让我们创建一个容易操作的形状--一个简单的圆。

circ_image = np.zeros((100, 100))
circ_image[circle(50, 50, 25)] = 1
imshow(circ_image);

Python图像处理之膨胀与腐蚀的操作

现在让我们定义一个内核。

cross = np.array([[0,1,0],
   [1,1,1],
   [0,1,0]])
imshow(cross, cmap = 'gray');

Python图像处理之膨胀与腐蚀的操作

将腐蚀函数应用到创建的圆上。

eroded_circle = erosion(circ_image, cross)
imshow(eroded_circle);

Python图像处理之膨胀与腐蚀的操作

图像看起来几乎一模一样。要看到那些微小的差异,我们必须仔细查看图像。

linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(eroded_circle, cmap = 'gray');
ax[1].set_title('Eroded', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

我们可以看到,被腐蚀的圆已经略微缩小了。这就是腐蚀一个对象的意义。如果我们对腐蚀函数进行迭代,它的效果会变得非常明显。

def multi_erosion(image, kernel, iterations):
 for i in range(iterations):
 image = erosion(image, kernel)
 return image
ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Iterations : {ites[n]}', fontsize = 16)
 new_circle = multi_erosion(circ_image, cross, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

上图清楚地显示了图像是如何被腐蚀的。现在让我们尝试改变内核,如果我们使用水平线和垂直线内核代替交叉内核会怎样呢?

h_line = np.array([[0,0,0],
   [1,1,1],
   [0,0,0]])
v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0]])
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
ax[0].imshow(h_line, cmap='gray');
ax[1].imshow(v_line, cmap='gray');
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

正如我们所看到的,水平和垂直的腐蚀以不同的方式影响着图像。使用水平内核我们得到一个垂直方向细长的圆;而使用垂直内核我们得到一个水平方向细长的圆。

你可能会奇怪,为什么使用垂直内核,会得到一个水平方向细长的圆呢?

因为腐蚀函数是分别寻找垂直和水平的线条,并慢慢把它们削掉。膨胀函数将会让我们更清晰的理解这一点。

使用下面的函数设置处理的图像、膨胀内核以及迭代次数。

def multi_dilation(image, kernel, iterations):
 for i in range(iterations):
 image = dilation(image, kernel)
 return image

让我们看一下处理后的图像有什么不同。

dilated_circle = multi_dilation(circ_image, cross, 1)
linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(dilated_circle, cmap = 'gray');
ax[1].set_title('Dilated', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

可以清楚地看到圆现在已经越过了红线,这清楚地表明它已经扩大了。现在让我们对水平和垂直扩张进行迭代。

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 
   12)
 new_circle = multi_dilation(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_dilation(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

现在可以非常清楚地看到,水平扩张增加了图像宽度,而垂直扩张增加了图像高度。

现在我们已经了解了膨胀与腐蚀的基本原理,下面来看一个相对复杂的图像。

complex_image = imread('complex_image.png')
imshow(complex_image);

Python图像处理之膨胀与腐蚀的操作

在上面的图像中,我们看到了水平线、垂直线和圆的混合物。我们可以使用膨胀和腐蚀函数孤立地观察每一种形状。

为了得到圆,我们可以先腐蚀垂直的线,再腐蚀水平的线。但要记住最后要对图像进行膨胀,因为腐蚀函数同样腐蚀了圆。

step_1 = multi_erosion(complex_image, h_line,3)
step_2 = multi_erosion(step_1, v_line,3)
step_3 = multi_dilation(step_2, h_line,3)
step_4 = multi_dilation(step_3, v_line,3)
steps = [step_1, step_2, step_3, step_4]
names = ['Step 1', 'Step 2', 'Step 3', 'Step 4']
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

同样,下面的代码将得到水平的线。

step_1 = multi_erosion(complex_image, cross, 20)
step_2 = multi_dilation(step_1, h_line, 20)
step_3 = multi_dilation(step_2, v_line,2)
steps = [step_1, step_2, step_3]
names = ['Step 1', 'Step 2', 'Step 3']
fig, ax = plt.subplots(1, 3, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

为了得到垂直的线,我们可以创建一个新的内核。

long_v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0]])
step_1 = multi_erosion(complex_image, long_v_line, 10)
step_2 = multi_dilation(step_1 ,long_v_line, 10)
steps = [step_1, step_2]
names = ['Step 1', 'Step 2']
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

注意,内核并不局限于本文中提到的这几种,可以根据不同的需求自己定义合适的内核。

总结

内核腐蚀和膨胀是图像处理领域需要理解的基本概念。它们甚至可能是任何图像处理模块的第一课。直观地理解它们将是你以后在这个领域成功的关键。

到此这篇关于Python图像处理之膨胀与腐蚀的操作的文章就介绍到这了,更多相关Python图像膨胀与腐蚀内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 条件判断的缩写方法
Sep 06 Python
Python中操作符重载用法分析
Apr 29 Python
Python 实现某个功能每隔一段时间被执行一次的功能方法
Oct 14 Python
python+selenium 定位到元素,无法点击的解决方法
Jan 30 Python
pyqt5 实现多窗口跳转的方法
Jun 19 Python
如何使用Python标准库进行性能测试
Jun 25 Python
Python2比较当前图片跟图库哪个图片相似的方法示例
Sep 28 Python
Python如何操作office实现自动化及win32com.client的运用
Apr 01 Python
Python yield生成器和return对比代码实例
Apr 20 Python
pytorch查看通道数 维数 尺寸大小方式
May 26 Python
python seaborn heatmap可视化相关性矩阵实例
Jun 03 Python
Selenium Webdriver元素定位的八种常用方式(小结)
Jan 13 Python
django inspectdb 操作已有数据库数据的使用步骤
Feb 07 #Python
python数据抓取3种方法总结
Feb 07 #Python
python 批量将中文名转换为拼音
Feb 07 #Python
如何用用Python将地址标记在地图上
Feb 07 #Python
python 三种方法提取pdf中的图片
Feb 07 #Python
Python 转移文件至云对象存储的方法
Feb 07 #Python
Python调用SMTP服务自动发送Email的实现步骤
Feb 07 #Python
You might like
《PHP编程最快明白》第二讲 数字、浮点、布尔型、字符串和数组
2010/11/01 PHP
php中获取关键词及所属来源搜索引擎名称的代码
2011/02/15 PHP
php中计算中文字符串长度、截取中文字符串的函数代码
2011/08/09 PHP
PHP中__FILE__、dirname与basename用法实例分析
2014/12/01 PHP
简短几句jquery代码的实现一个图片向上滚动切换
2011/09/02 Javascript
让元素在网页中可拖动示例代码
2013/08/13 Javascript
JS实现可直接显示网页代码运行效果的HTML代码预览功能实例
2015/08/06 Javascript
jQuery右下角旋转环状菜单特效代码
2015/08/10 Javascript
javascript如何实现暂停功能
2015/11/06 Javascript
基于JavaScript实现轮播图代码
2016/07/14 Javascript
简单的vue-resourse获取json并应用到模板示例
2017/02/10 Javascript
AngularJS constant和value区别详解
2017/02/28 Javascript
Bootstrap 3浏览器兼容性问题及解决方案
2017/04/11 Javascript
vue.js中v-on:textInput无法执行事件问题的解决过程
2017/07/12 Javascript
解决VUE双向绑定失效的问题
2019/10/29 Javascript
Angular单元测试之事件触发的实现
2020/01/20 Javascript
如何解决vue在ios微信"复制链接"功能问题
2020/03/26 Javascript
Antd表格滚动 宽度自适应 不换行的实例
2020/10/27 Javascript
Python中使用Boolean操作符做真值测试实例
2015/01/30 Python
Python 常用的安装Module方式汇总
2017/05/06 Python
python调用opencv实现猫脸检测功能
2019/01/15 Python
python微信聊天机器人改进版(定时或触发抓取天气预报、励志语录等,向好友推送)
2019/04/25 Python
Django框架模板的使用方法示例
2019/05/25 Python
python树的同构学习笔记
2019/09/14 Python
Python获取对象属性的几种方式小结
2020/03/12 Python
聊聊Python pandas 中loc函数的使用,及跟iloc的区别说明
2021/03/03 Python
HTML5 Canvas旋转动画的2个代码例子(一个旋转的太极图效果)
2014/04/10 HTML / CSS
巴西最大的在线约会网站:ParPerfeito
2018/07/11 全球购物
Steiff台湾官网:德国金耳釦泰迪熊
2019/12/26 全球购物
J2SDK1.5与J2SDK5.0有什么区别
2012/09/19 面试题
网络工程师的自我评价
2013/10/02 职场文书
注塑工厂厂长岗位职责
2013/12/02 职场文书
旅游业大学生创业计划书
2014/01/31 职场文书
年终总结会主持词
2014/03/25 职场文书
个人政风行风自查自纠报告
2014/10/21 职场文书
教师“一帮一”结对子活动总结
2015/05/07 职场文书