Python图像处理之膨胀与腐蚀的操作


Posted in Python onFebruary 07, 2021

引言

膨胀与腐蚀是图像处理中两种最基本的形态学操作,膨胀将目标点融合到背景中,向外部扩展,腐蚀与膨胀意义相反,消除连通的边界,使边界向内收缩。在本文中我们将了解使用内核的图像膨胀与腐蚀的基本原理。

让我们开始吧,同样我们需要导入必需的库。

import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.draw import circle
from skimage.morphology import erosion, dilation

首先让我们创建一个容易操作的形状--一个简单的圆。

circ_image = np.zeros((100, 100))
circ_image[circle(50, 50, 25)] = 1
imshow(circ_image);

Python图像处理之膨胀与腐蚀的操作

现在让我们定义一个内核。

cross = np.array([[0,1,0],
   [1,1,1],
   [0,1,0]])
imshow(cross, cmap = 'gray');

Python图像处理之膨胀与腐蚀的操作

将腐蚀函数应用到创建的圆上。

eroded_circle = erosion(circ_image, cross)
imshow(eroded_circle);

Python图像处理之膨胀与腐蚀的操作

图像看起来几乎一模一样。要看到那些微小的差异,我们必须仔细查看图像。

linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(eroded_circle, cmap = 'gray');
ax[1].set_title('Eroded', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

我们可以看到,被腐蚀的圆已经略微缩小了。这就是腐蚀一个对象的意义。如果我们对腐蚀函数进行迭代,它的效果会变得非常明显。

def multi_erosion(image, kernel, iterations):
 for i in range(iterations):
 image = erosion(image, kernel)
 return image
ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Iterations : {ites[n]}', fontsize = 16)
 new_circle = multi_erosion(circ_image, cross, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

上图清楚地显示了图像是如何被腐蚀的。现在让我们尝试改变内核,如果我们使用水平线和垂直线内核代替交叉内核会怎样呢?

h_line = np.array([[0,0,0],
   [1,1,1],
   [0,0,0]])
v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0]])
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
ax[0].imshow(h_line, cmap='gray');
ax[1].imshow(v_line, cmap='gray');
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

正如我们所看到的,水平和垂直的腐蚀以不同的方式影响着图像。使用水平内核我们得到一个垂直方向细长的圆;而使用垂直内核我们得到一个水平方向细长的圆。

你可能会奇怪,为什么使用垂直内核,会得到一个水平方向细长的圆呢?

因为腐蚀函数是分别寻找垂直和水平的线条,并慢慢把它们削掉。膨胀函数将会让我们更清晰的理解这一点。

使用下面的函数设置处理的图像、膨胀内核以及迭代次数。

def multi_dilation(image, kernel, iterations):
 for i in range(iterations):
 image = dilation(image, kernel)
 return image

让我们看一下处理后的图像有什么不同。

dilated_circle = multi_dilation(circ_image, cross, 1)
linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(dilated_circle, cmap = 'gray');
ax[1].set_title('Dilated', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

可以清楚地看到圆现在已经越过了红线,这清楚地表明它已经扩大了。现在让我们对水平和垂直扩张进行迭代。

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 
   12)
 new_circle = multi_dilation(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_dilation(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

现在可以非常清楚地看到,水平扩张增加了图像宽度,而垂直扩张增加了图像高度。

现在我们已经了解了膨胀与腐蚀的基本原理,下面来看一个相对复杂的图像。

complex_image = imread('complex_image.png')
imshow(complex_image);

Python图像处理之膨胀与腐蚀的操作

在上面的图像中,我们看到了水平线、垂直线和圆的混合物。我们可以使用膨胀和腐蚀函数孤立地观察每一种形状。

为了得到圆,我们可以先腐蚀垂直的线,再腐蚀水平的线。但要记住最后要对图像进行膨胀,因为腐蚀函数同样腐蚀了圆。

step_1 = multi_erosion(complex_image, h_line,3)
step_2 = multi_erosion(step_1, v_line,3)
step_3 = multi_dilation(step_2, h_line,3)
step_4 = multi_dilation(step_3, v_line,3)
steps = [step_1, step_2, step_3, step_4]
names = ['Step 1', 'Step 2', 'Step 3', 'Step 4']
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

同样,下面的代码将得到水平的线。

step_1 = multi_erosion(complex_image, cross, 20)
step_2 = multi_dilation(step_1, h_line, 20)
step_3 = multi_dilation(step_2, v_line,2)
steps = [step_1, step_2, step_3]
names = ['Step 1', 'Step 2', 'Step 3']
fig, ax = plt.subplots(1, 3, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

为了得到垂直的线,我们可以创建一个新的内核。

long_v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0]])
step_1 = multi_erosion(complex_image, long_v_line, 10)
step_2 = multi_dilation(step_1 ,long_v_line, 10)
steps = [step_1, step_2]
names = ['Step 1', 'Step 2']
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

注意,内核并不局限于本文中提到的这几种,可以根据不同的需求自己定义合适的内核。

总结

内核腐蚀和膨胀是图像处理领域需要理解的基本概念。它们甚至可能是任何图像处理模块的第一课。直观地理解它们将是你以后在这个领域成功的关键。

到此这篇关于Python图像处理之膨胀与腐蚀的操作的文章就介绍到这了,更多相关Python图像膨胀与腐蚀内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中用max()方法求最大值的介绍
May 15 Python
python 删除大文件中的某一行(最有效率的方法)
Aug 19 Python
python批量设置多个Excel文件页眉页脚的脚本
Mar 14 Python
Python简单实现两个任意字符串乘积的方法示例
Apr 12 Python
详解利用Python scipy.signal.filtfilt() 实现信号滤波
Jun 05 Python
使用python模拟命令行终端的示例
Aug 13 Python
Django 简单实现分页与搜索功能的示例代码
Nov 07 Python
pytorch中使用cuda扩展的实现示例
Feb 12 Python
Python flask框架端口失效解决方案
Jun 04 Python
Jupyter Notebook安装及使用方法解析
Nov 12 Python
Python绘制词云图之可视化神器pyecharts的方法
Feb 23 Python
python自动获取微信公众号最新文章的实现代码
Jul 15 Python
django inspectdb 操作已有数据库数据的使用步骤
Feb 07 #Python
python数据抓取3种方法总结
Feb 07 #Python
python 批量将中文名转换为拼音
Feb 07 #Python
如何用用Python将地址标记在地图上
Feb 07 #Python
python 三种方法提取pdf中的图片
Feb 07 #Python
Python 转移文件至云对象存储的方法
Feb 07 #Python
Python调用SMTP服务自动发送Email的实现步骤
Feb 07 #Python
You might like
php图片缩放实现方法
2014/02/20 PHP
php curl上传、下载、https登陆实现代码
2017/07/23 PHP
showModelessDialog()使用详解
2006/09/21 Javascript
jQuery 1.7.2中getAll方法的疑惑分析
2012/05/23 Javascript
javascript 中that的含义示例介绍
2014/05/14 Javascript
document.write的几点使用心得
2014/05/14 Javascript
js实现类似新浪微博首页内容渐显效果的方法
2015/04/10 Javascript
JavaScript作用域示例详解
2016/07/07 Javascript
JS+CSS3制作炫酷的弹窗效果
2016/11/08 Javascript
如何重置vue打印变量的显示方式
2017/12/06 Javascript
JavaScript获取当前url路径过程解析
2019/12/27 Javascript
vue-cli点击实现全屏功能
2020/03/07 Javascript
解决Antd 里面的select 选择框联动触发的问题
2020/10/24 Javascript
[02:23]2018DOTA2亚洲邀请赛趣味视频——反应测试
2018/04/04 DOTA
python定时器(Timer)用法简单实例
2015/06/04 Python
Python使用matplotlib填充图形指定区域代码示例
2018/01/16 Python
对python3 中方法各种参数和返回值详解
2018/12/15 Python
使用CodeMirror实现Python3在线编辑器的示例代码
2019/01/14 Python
django框架基于queryset和双下划线的跨表查询操作详解
2019/12/11 Python
Tensorflow获取张量Tensor的具体维数实例
2020/01/19 Python
Python爬虫逆向分析某云音乐加密参数的实例分析
2020/12/04 Python
加拿大折扣、优惠券和交易网站:WagJag
2018/02/07 全球购物
size?瑞典:英国伦敦的球鞋精品店
2018/03/01 全球购物
澳大利亚排名第一的狂热牛仔品牌:ONETEASPOON
2018/11/20 全球购物
英国在线玫瑰专家:InterRose
2019/12/01 全球购物
Java中实现多态的机制
2015/08/09 面试题
课改先进个人汇报材料
2014/01/26 职场文书
《厄运打不垮的信念》教学反思
2014/04/13 职场文书
2014年村支部书记四风对照检查材料思想汇报
2014/10/02 职场文书
延安红色之旅心得体会
2014/10/07 职场文书
法定代表人资格证明书
2015/06/18 职场文书
同事去世追悼词
2015/06/23 职场文书
导游词之无锡梅园
2019/11/28 职场文书
mysql连接查询中and与where的区别浅析
2021/07/01 MySQL
MySQL系列之开篇 MySQL关系型数据库基础概念
2021/07/02 MySQL
Canvas绘制像素风图片的示例代码
2021/09/25 HTML / CSS