Python搭建Keras CNN模型破解网站验证码的实现


Posted in Python onApril 07, 2020

在本项目中,将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的验证码。验证码如下:

Python搭建Keras CNN模型破解网站验证码的实现

 利用Keras可以快速方便地搭建CNN模型,本项目搭建的CNN模型如下:

Python搭建Keras CNN模型破解网站验证码的实现

将数据集分为训练集和测试集,占比为8:2,该模型训练的代码如下: 

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
 
from keras.utils import np_utils, plot_model
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.callbacks import EarlyStopping
from keras.layers import Conv2D, MaxPooling2D
 
# 读取数据
df = pd.read_csv('./data.csv')
 
# 标签值
vals = range(31)
keys = ['1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','J','K','L','N','P','Q','R','S','T','U','V','X','Y','Z']
label_dict = dict(zip(keys, vals))
 
x_data = df[['v'+str(i+1) for i in range(320)]]
y_data = pd.DataFrame({'label':df['label']})
y_data['class'] = y_data['label'].apply(lambda x: label_dict[x])
 
# 将数据分为训练集和测试集
X_train, X_test, Y_train, Y_test = train_test_split(x_data, y_data['class'], test_size=0.3, random_state=42)
x_train = np.array(X_train).reshape((1167, 20, 16, 1))
x_test = np.array(X_test).reshape((501, 20, 16, 1))
 
# 对标签值进行one-hot encoding
n_classes = 31
y_train = np_utils.to_categorical(Y_train, n_classes)
y_val = np_utils.to_categorical(Y_test, n_classes)
 
input_shape = x_train[0].shape
 
# CNN模型
model = Sequential()
 
# 卷积层和池化层
model.add(Conv2D(32, kernel_size=(3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(32, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
 
# Dropout层
model.add(Dropout(0.25))
 
model.add(Conv2D(64, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
 
model.add(Dropout(0.25))
 
model.add(Conv2D(128, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(128, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
 
model.add(Dropout(0.25))
 
model.add(Flatten())
 
# 全连接层
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dense(n_classes, activation='softmax'))
 
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
 
# plot model
##plot_model(model, to_file=r'./model.png', show_shapes=True)
 
# 模型训练
callbacks = [EarlyStopping(monitor='val_acc', patience=5, verbose=1)]
batch_size = 64
n_epochs = 100
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=n_epochs, \
          verbose=1, validation_data=(x_test, y_val), callbacks=callbacks)
 
mp = './verifycode_Keras.h5'
model.save(mp)
 
# 绘制验证集上的准确率曲线
val_acc = history.history['val_acc']
plt.plot(range(len(val_acc)), val_acc, label='CNN model')
plt.title('Validation accuracy on verifycode dataset')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend()
plt.show()

在上述代码中,训练模型的时候采用了early stopping技巧。early stopping是用于提前停止训练的callbacks。具体地,可以达到当训练集上的loss不在减小(即减小的程度小于某个阈值)的时候停止继续训练。 

运行上述模型训练代码,输出的结果如下:

......(忽略之前的输出)
Epoch 22/100
 
 64/1167 [>.............................] - ETA: 3s - loss: 0.0399 - acc: 1.0000
 128/1167 [==>...........................] - ETA: 3s - loss: 0.1195 - acc: 0.9844
 192/1167 [===>..........................] - ETA: 2s - loss: 0.1085 - acc: 0.9792
 256/1167 [=====>........................] - ETA: 2s - loss: 0.1132 - acc: 0.9727
 320/1167 [=======>......................] - ETA: 2s - loss: 0.1045 - acc: 0.9750
 384/1167 [========>.....................] - ETA: 2s - loss: 0.1006 - acc: 0.9740
 448/1167 [==========>...................] - ETA: 2s - loss: 0.1522 - acc: 0.9643
 512/1167 [============>.................] - ETA: 1s - loss: 0.1450 - acc: 0.9648
 576/1167 [=============>................] - ETA: 1s - loss: 0.1368 - acc: 0.9653
 640/1167 [===============>..............] - ETA: 1s - loss: 0.1353 - acc: 0.9641
 704/1167 [=================>............] - ETA: 1s - loss: 0.1280 - acc: 0.9659
 768/1167 [==================>...........] - ETA: 1s - loss: 0.1243 - acc: 0.9674
 832/1167 [====================>.........] - ETA: 0s - loss: 0.1577 - acc: 0.9639
 896/1167 [======================>.......] - ETA: 0s - loss: 0.1488 - acc: 0.9665
 960/1167 [=======================>......] - ETA: 0s - loss: 0.1488 - acc: 0.9656
1024/1167 [=========================>....] - ETA: 0s - loss: 0.1427 - acc: 0.9668
1088/1167 [==========================>...] - ETA: 0s - loss: 0.1435 - acc: 0.9669
1152/1167 [============================>.] - ETA: 0s - loss: 0.1383 - acc: 0.9688
1167/1167 [==============================] - 4s 3ms/step - loss: 0.1380 - acc: 0.9683 - val_loss: 0.0835 - val_acc: 0.9760
Epoch 00022: early stopping

可以看到,花费几分钟,一共训练了21次,最近一次的训练后,在测试集上的准确率为96.83%。在测试集的准确率曲线如下图:

Python搭建Keras CNN模型破解网站验证码的实现

模型训练完后,我们对新的验证码进行预测。新的100张验证码如下图: 

Python搭建Keras CNN模型破解网站验证码的实现

使用训练好的CNN模型,对这些新的验证码进行预测,预测的Python代码如下:

# -*- coding: utf-8 -*-
 
import os
import cv2
import numpy as np
 
def split_picture(imagepath):
 
  # 以灰度模式读取图片
  gray = cv2.imread(imagepath, 0)
 
  # 将图片的边缘变为白色
  height, width = gray.shape
  for i in range(width):
    gray[0, i] = 255
    gray[height-1, i] = 255
  for j in range(height):
    gray[j, 0] = 255
    gray[j, width-1] = 255
 
  # 中值滤波
  blur = cv2.medianBlur(gray, 3) #模板大小3*3
 
  # 二值化
  ret,thresh1 = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)
 
  # 提取单个字符
  chars_list = []
  image, contours, hierarchy = cv2.findContours(thresh1, 2, 2)
  for cnt in contours:
    # 最小的外接矩形
    x, y, w, h = cv2.boundingRect(cnt)
    if x != 0 and y != 0 and w*h >= 100:
      chars_list.append((x,y,w,h))
 
  sorted_chars_list = sorted(chars_list, key=lambda x:x[0])
  for i,item in enumerate(sorted_chars_list):
    x, y, w, h = item
    cv2.imwrite('test_verifycode/%d.jpg'%(i+1), thresh1[y:y+h, x:x+w])
 
def remove_edge_picture(imagepath):
 
  image = cv2.imread(imagepath, 0)
  height, width = image.shape
  corner_list = [image[0,0] < 127,
          image[height-1, 0] < 127,
          image[0, width-1]<127,
          image[ height-1, width-1] < 127
          ]
  if sum(corner_list) >= 3:
    os.remove(imagepath)
 
def resplit_with_parts(imagepath, parts):
  image = cv2.imread(imagepath, 0)
  os.remove(imagepath)
  height, width = image.shape
 
  file_name = imagepath.split('/')[-1].split(r'.')[0]
  # 将图片重新分裂成parts部分
  step = width//parts   # 步长
  start = 0       # 起始位置
  for i in range(parts):
    cv2.imwrite('./test_verifycode/%s.jpg'%(file_name+'-'+str(i)), \
          image[:, start:start+step])
    start += step
 
def resplit(imagepath):
 
  image = cv2.imread(imagepath, 0)
  height, width = image.shape
 
  if width >= 64:
    resplit_with_parts(imagepath, 4)
  elif width >= 48:
    resplit_with_parts(imagepath, 3)
  elif width >= 26:
    resplit_with_parts(imagepath, 2)
 
# rename and convert to 16*20 size
def convert(dir, file):
 
  imagepath = dir+'/'+file
  # 读取图片
  image = cv2.imread(imagepath, 0)
  # 二值化
  ret, thresh = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
  img = cv2.resize(thresh, (16, 20), interpolation=cv2.INTER_AREA)
  # 保存图片
  cv2.imwrite('%s/%s' % (dir, file), img)
 
# 读取图片的数据,并转化为0-1值
def Read_Data(dir, file):
 
  imagepath = dir+'/'+file
  # 读取图片
  image = cv2.imread(imagepath, 0)
  # 二值化
  ret, thresh = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
  # 显示图片
  bin_values = [1 if pixel==255 else 0 for pixel in thresh.ravel()]
 
  return bin_values
 
def predict(VerifyCodePath):
 
  dir = './test_verifycode'
  files = os.listdir(dir)
 
  # 清空原有的文件
  if files:
    for file in files:
      os.remove(dir + '/' + file)
 
  split_picture(VerifyCodePath)
 
  files = os.listdir(dir)
  if not files:
    print('查看的文件夹为空!')
  else:
 
    # 去除噪声图片
    for file in files:
      remove_edge_picture(dir + '/' + file)
 
    # 对黏连图片进行重分割
    for file in os.listdir(dir):
      resplit(dir + '/' + file)
 
    # 将图片统一调整至16*20大小
    for file in os.listdir(dir):
      convert(dir, file)
 
    # 图片中的字符代表的向量
    files = sorted(os.listdir(dir), key=lambda x: x[0])
    table = np.array([Read_Data(dir, file) for file in files]).reshape(-1,20,16,1)
 
    # 模型保存地址
    mp = './verifycode_Keras.h5'
    # 载入模型
    from keras.models import load_model
    cnn = load_model(mp)
    # 模型预测
    y_pred = cnn.predict(table)
    predictions = np.argmax(y_pred, axis=1)
 
    # 标签字典
    keys = range(31)
    vals = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'N',
        'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'X', 'Y', 'Z']
    label_dict = dict(zip(keys, vals))
 
    return ''.join([label_dict[pred] for pred in predictions])
 
def main():
 
  dir = './VerifyCode/'
  correct = 0
  for i, file in enumerate(os.listdir(dir)):
    true_label = file.split('.')[0]
    VerifyCodePath = dir+file
    pred = predict(VerifyCodePath)
 
    if true_label == pred:
      correct += 1
    print(i+1, (true_label, pred), true_label == pred, correct)
 
  total = len(os.listdir(dir))
  print('\n总共图片:%d张\n识别正确:%d张\n识别准确率:%.2f%%.'\
     %(total, correct, correct*100/total))
 
main()

以下是该CNN模型的预测结果:

Using TensorFlow backend.
2018-10-25 15:13:50.390130: I C: f_jenkinsworkspace
el-winMwindowsPY35 ensorflowcoreplatformcpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
1 ('ZK6N', 'ZK6N') True 1
2 ('4JPX', '4JPX') True 2
3 ('5GP5', '5GP5') True 3
4 ('5RQ8', '5RQ8') True 4
5 ('5TQP', '5TQP') True 5
6 ('7S62', '7S62') True 6
7 ('8R2Z', '8R2Z') True 7
8 ('8RFV', '8RFV') True 8
9 ('9BBT', '9BBT') True 9
10 ('9LNE', '9LNE') True 10
11 ('67UH', '67UH') True 11
12 ('74UK', '74UK') True 12
13 ('A5T2', 'A5T2') True 13
14 ('AHYV', 'AHYV') True 14
15 ('ASEY', 'ASEY') True 15
16 ('B371', 'B371') True 16
17 ('CCQL', 'CCQL') True 17
18 ('CFD5', 'GFD5') False 17
19 ('CJLJ', 'CJLJ') True 18
20 ('D4QV', 'D4QV') True 19
21 ('DFQ8', 'DFQ8') True 20
22 ('DP18', 'DP18') True 21
23 ('E3HC', 'E3HC') True 22
24 ('E8VB', 'E8VB') True 23
25 ('DE1U', 'DE1U') True 24
26 ('FK1R', 'FK1R') True 25
27 ('FK91', 'FK91') True 26
28 ('FSKP', 'FSKP') True 27
29 ('FVZP', 'FVZP') True 28
30 ('GC6H', 'GC6H') True 29
31 ('GH62', 'GH62') True 30
32 ('H9FQ', 'H9FQ') True 31
33 ('H67Q', 'H67Q') True 32
34 ('HEKC', 'HEKC') True 33
35 ('HV2B', 'HV2B') True 34
36 ('J65Z', 'J65Z') True 35
37 ('JZCX', 'JZCX') True 36
38 ('KH5D', 'KH5D') True 37
39 ('KXD2', 'KXD2') True 38
40 ('1GDH', '1GDH') True 39
41 ('LCL3', 'LCL3') True 40
42 ('LNZR', 'LNZR') True 41
43 ('LZU5', 'LZU5') True 42
44 ('N5AK', 'N5AK') True 43
45 ('N5Q3', 'N5Q3') True 44
46 ('N96Z', 'N96Z') True 45
47 ('NCDG', 'NCDG') True 46
48 ('NELS', 'NELS') True 47
49 ('P96U', 'P96U') True 48
50 ('PD42', 'PD42') True 49
51 ('PECG', 'PEQG') False 49
52 ('PPZF', 'PPZF') True 50
53 ('PUUL', 'PUUL') True 51
54 ('Q2DN', 'D2DN') False 51
55 ('QCQ9', 'QCQ9') True 52
56 ('QDB1', 'QDBJ') False 52
57 ('QZUD', 'QZUD') True 53
58 ('R3T5', 'R3T5') True 54
59 ('S1YT', 'S1YT') True 55
60 ('SP7L', 'SP7L') True 56
61 ('SR2K', 'SR2K') True 57
62 ('SUP5', 'SVP5') False 57
63 ('T2SP', 'T2SP') True 58
64 ('U6V9', 'U6V9') True 59
65 ('UC9P', 'UC9P') True 60
66 ('UFYD', 'UFYD') True 61
67 ('V9NJ', 'V9NH') False 61
68 ('V35X', 'V35X') True 62
69 ('V98F', 'V98F') True 63
70 ('VD28', 'VD28') True 64
71 ('YGHE', 'YGHE') True 65
72 ('YNKD', 'YNKD') True 66
73 ('YVXV', 'YVXV') True 67
74 ('ZFBS', 'ZFBS') True 68
75 ('ET6X', 'ET6X') True 69
76 ('TKVC', 'TKVC') True 70
77 ('2UCU', '2UCU') True 71
78 ('HNBK', 'HNBK') True 72
79 ('X8FD', 'X8FD') True 73
80 ('ZGNX', 'ZGNX') True 74
81 ('LQCU', 'LQCU') True 75
82 ('JNZY', 'JNZVY') False 75
83 ('RX34', 'RX34') True 76
84 ('811E', '811E') True 77
85 ('ETDX', 'ETDX') True 78
86 ('4CPR', '4CPR') True 79
87 ('FE91', 'FE91') True 80
88 ('B7XH', 'B7XH') True 81
89 ('1RUA', '1RUA') True 82
90 ('UBCX', 'UBCX') True 83
91 ('KVT5', 'KVT5') True 84
92 ('HZ3A', 'HZ3A') True 85
93 ('3XLR', '3XLR') True 86
94 ('VC7T', 'VC7T') True 87
95 ('7PG1', '7PQ1') False 87
96 ('4F21', '4F21') True 88
97 ('3HLJ', '3HLJ') True 89
98 ('1KT7', '1KT7') True 90
99 ('1RHE', '1RHE') True 91
100 ('1TTA', '1TTA') True 92

总共图片:100张
识别正确:92张
识别准确率:92.00%.

可以看到,该训练后的CNN模型,其预测新验证的准确率在90%以上。

Demo及数据集下载网站:CNN_4_Verifycode_3water.rar

到此这篇关于Python搭建Keras CNN模型破解网站验证码的实现的文章就介绍到这了,更多相关Python Keras CNN破解网站验证码内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
linux下安装easy_install的方法
Feb 10 Python
用python代码做configure文件
Jul 20 Python
Python的shutil模块中文件的复制操作函数详解
Jul 05 Python
python解决pandas处理缺失值为空字符串的问题
Apr 08 Python
python3 pandas 读取MySQL数据和插入的实例
Apr 20 Python
把csv文件转化为数组及数组的切片方法
Jul 04 Python
CentOS下Python3的安装及创建虚拟环境的方法
Nov 28 Python
Django时区详解
Jul 24 Python
解决Python对齐文本字符串问题
Aug 28 Python
基于python调用jenkins-cli实现快速发布
Aug 14 Python
python Scrapy框架原理解析
Jan 04 Python
python中Pexpect的工作流程实例讲解
Mar 02 Python
Python3之外部文件调用Django程序操作model等文件实现方式
Apr 07 #Python
解决django的template中如果无法引用MEDIA_URL问题
Apr 07 #Python
Django {{ MEDIA_URL }}无法显示图片的解决方式
Apr 07 #Python
Python Opencv中用compareHist函数进行直方图比较对比图片
Apr 07 #Python
python opencv实现图片缺陷检测(讲解直方图以及相关系数对比法)
Apr 07 #Python
解决django无法访问本地static文件(js,css,img)网页里js,cs都加载不了
Apr 07 #Python
Pytest框架之fixture的详细使用教程
Apr 07 #Python
You might like
PHP根据传来的16进制颜色代码自动改变背景颜色
2014/06/13 PHP
thinkPHP订单数字提醒功能的实现方法
2016/12/01 PHP
浅谈ThinkPHP5.0版本和ThinkPHP3.2版本的区别
2017/06/17 PHP
thinkphp5.1框架实现格式化mysql时间戳为日期的方式小结
2019/10/10 PHP
关于jquery ajax 调用带参数的webservice返回XML数据一个小细节
2012/07/31 Javascript
Json字符串转换为JS对象的高效方法实例
2013/05/01 Javascript
JavaScript数据类型检测代码分享
2015/01/26 Javascript
JavaScript返回网页中超链接数量的方法
2015/04/03 Javascript
通过js获取上传的图片信息(临时保存路径,名称,大小)然后通过ajax传递给后端的方法
2015/10/01 Javascript
全面解析Bootstrap手风琴效果
2020/04/17 Javascript
通过node-mysql搭建Windows+Node.js+MySQL环境的教程
2016/03/01 Javascript
JS实现把鼠标放到链接上出现滚动文字的方法
2016/04/06 Javascript
JavaScript中数组Array方法详解
2017/02/27 Javascript
深入理解angular2启动项目步骤
2017/07/15 Javascript
Vue 中的compile操作方法
2018/02/26 Javascript
详解webpack打包后如何调试的方法步骤
2018/11/07 Javascript
JavaScript如何判断对象有某属性
2020/07/03 Javascript
Vue作用域插槽实现方法及作用详解
2020/07/08 Javascript
OpenLayers3实现对地图的基本操作
2020/09/28 Javascript
JavaScript实现缓动动画
2020/11/25 Javascript
利用Python批量生成任意尺寸的图片
2016/08/29 Python
python简单实例训练(21~30)
2017/11/15 Python
python实战教程之自动扫雷
2018/07/13 Python
python 实现UTC时间加减的方法
2018/12/31 Python
Django的Modelforms用法简介
2019/07/27 Python
python中的global关键字的使用方法
2019/08/20 Python
Python结合百度语音识别实现实时翻译软件的实现
2021/01/18 Python
欧洲最大的笔和书写专家:The Pen Shop
2017/03/19 全球购物
What's the difference between Debug and Trace class? (Debug类与Trace类有什么区别)
2013/09/10 面试题
市场营销管理制度
2014/01/29 职场文书
班主任经验交流会主持词
2014/04/01 职场文书
《大自然的语言》教学反思
2014/04/08 职场文书
课外小组活动总结
2014/08/27 职场文书
渠道运营商合作协议书范本
2014/10/06 职场文书
运动员代表致辞
2015/07/29 职场文书
解决Tkinter中button按钮未按却主动执行command函数的问题
2021/05/23 Python