Python科学计算之Pandas详解


Posted in Python onJanuary 15, 2017

起步

Pandas最初被作为金融数据分析工具而开发出来,因此 pandas 为时间序列分析提供了很好的支持。 Pandas 的名称来自于面板数据(panel data)和python数据分析 (data analysis) 。panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。

在我看来,对于 Numpy 以及 Matplotlib ,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础。而Scipy当然是另一个主要的也十分出色的科学计算库。

安装与导入

通过pip进行安装: pip install pandas

导入:

import pandas as pd

Pandas的数据类型

Pandas基于两种数据类型: series 与 dataframe 。

Series

一个series是一个一维的数据类型,其中每一个元素都有一个标签。类似于Numpy中元素带标签的数组。其中,标签可以是数字或者字符串。

# coding: utf-8
import numpy as np
import pandas as pd

s = pd.Series([1, 2, 5, np.nan, 6, 8])
print s

输出:

0 1.0
1 2.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64

DataFrame

一个dataframe是一个二维的表结构。Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签。你可以把它想象成一个series的字典项。

创建一个 DateFrame:

#创建日期索引序列 
dates = pd.date_range('20130101', periods=6)
#创建Dataframe,其中 index 决定索引序列,columns 决定列名
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
print df

输出:

A  B  C  D
2013-01-01 -0.334482 0.746019 -2.205026 -0.803878
2013-01-02 2.007879 1.559073 -0.527997 0.950946
2013-01-03 -1.053796 0.438214 -0.027664 0.018537
2013-01-04 -0.208744 -0.725155 -0.395226 -0.268529
2013-01-05 0.080822 -1.215433 -0.785030 0.977654
2013-01-06 -0.126459 0.426328 -0.474553 -1.968056

字典创建 DataFrame

df2 = pd.DataFrame({ 'A' : 1.,
   'B' : pd.Timestamp('20130102'),
   'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
   'D' : np.array([3] * 4,dtype='int32'),
   'E' : pd.Categorical(["test","train","test","train"]),
   'F' : 'foo' })

输出:

A  B C D E F
0 1 2013-01-02 1 3 test foo
1 1 2013-01-02 1 3 train foo
2 1 2013-01-02 1 3 test foo
3 1 2013-01-02 1 3 train foo

将文件数据导入Pandas

df = pd.read_csv("Average_Daily_Traffic_Counts.csv", header = 0)
df.head()

Python科学计算之Pandas详解

数据源可以是 英国政府数据 或 美国政府数据 来获取数据源。当然, Kaggle 是另一个好用的数据源。

选择/切片

# 选择单独的一列,返回 Serires,与 df.A 效果相当。
df['A']

# 位置切片
df[0:3]

# 索引切片
df['20130102':'20130104']

# 通过标签选择
df.loc[dates[0]]

# 对多个轴同时通过标签进行选择
df.loc[:,['A','B']]

# 获得某一个单元的数据
df.loc[dates[0],'A']
# 或者
df.at[dates[0],'A'] # 速度更快的做法

# 通过位置进行选择
df.iloc[3]

# 切片
df.iloc[3:5,0:2]

# 列表选择
df.iloc[[1,2,4],[0,2]]

# 获得某一个单元的数据
df.iloc[1,1]
# 或者
df.iat[1,1] # 更快的做法

# 布尔索引
df[df.A > 0]

# 获得大于零的项的数值
df[df > 0]

# isin 过滤
df2[df2['E'].isin(['two','four'])]

赋值

# 新增一列,根据索引排列
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
df['F'] = s1

# 缺省项
# 在 pandas 中使用 np.nan 作为缺省项的值。
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1

# 删除所有带有缺省项的行
df1.dropna(how='any')

# 填充缺省项
df1.fillna(value=5)

# 获得缺省项的布尔掩码
pd.isnull(df1)

观察操作

# 观察开头的数据
df.head()

# 观察末尾的数据
df.tail(3)

# 显示索引
df.index

# 显示列
df.columns

# 显示底层 numpy 结构
df.values

# DataFrame 的基本统计学属性预览
df.describe()
"""
  A  B  C  D
count 6.000000 6.000000 6.000000 6.000000 #数量
mean 0.073711 -0.431125 -0.687758 -0.233103 #平均值
std 0.843157 0.922818 0.779887 0.973118 #标准差
min -0.861849 -2.104569 -1.509059 -1.135632 #最小值
25% -0.611510 -0.600794 -1.368714 -1.076610 #正态分布 25%
50% 0.022070 -0.228039 -0.767252 -0.386188 #正态分布 50%
75% 0.658444 0.041933 -0.034326 0.461706 #正态分布 75%
max 1.212112 0.567020 0.276232 1.071804 #最大值
"""

# 转置
df.T

# 根据某一轴的索引进行排序
df.sort_index(axis=1, ascending=False)

# 根据某一列的数值进行排序
df.sort(columns='B')

统计

# 求平均值
df.mean()
"""
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
"""

# 指定轴上的平均值
df.mean(1)

# 不同维度的 pandas 对象也可以做运算,它会自动进行对应,shift 用来做对齐操作。
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
"""
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1
2013-01-04 3
2013-01-05 5
2013-01-06 NaN
Freq: D, dtype: float64
"""

# 对不同维度的 pandas 对象进行减法操作
df.sub(s, axis='index')
"""
   A  B  C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4 1
2013-01-04 -2.278445 -3.706771 -4.039575 2 0
2013-01-05 -5.424972 -4.432980 -4.723768 0 -1
2013-01-06 NaN NaN NaN NaN NaN
"""

函数应用

# 累加
df.apply(np.cumsum)

直方图

s = pd.Series(np.random.randint(0, 7, size=10))
s.value_counts()
"""
4 5
6 2
2 2
1 1
dtype: int64
String Methods
"""

字符处理

s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
"""
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
"""

合并

使用 concat() 连接 pandas 对象:

df = pd.DataFrame(np.random.randn(10, 4))
"""
  0  1  2  3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
"""

pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
"""
  0  1  2  3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
"""

join 合并:

left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
pd.merge(left, right, on='key')
"""
 key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
"""

追加

在 dataframe 数据后追加行

df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
s = df.iloc[3]
df.append(s, ignore_index=True)

分组

分组常常意味着可能包含以下的几种的操作中一个或多个

  • 依据一些标准分离数据
  • 对组单独地应用函数
  • 将结果合并到一个数据结构中
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
    'foo', 'bar', 'foo', 'foo'],
   'B' : ['one', 'one', 'two', 'three',
    'two', 'two', 'one', 'three'],
   'C' : np.random.randn(8),
   'D' : np.random.randn(8)})

# 对单个分组应用函数,数据被分成了 bar 组与 foo 组,分别计算总和。
df.groupby('A').sum()

# 依据多个列分组会构成一个分级索引
df.groupby(['A','B']).sum()
"""
   C  D
A B   
bar one -1.814470 2.395985
 three -0.595447 0.166599
 two -0.392670 -0.136473
foo one -1.195665 -0.616981
 three 1.928123 -1.623033
 two 2.414034 1.600434
"""

数据透视表

df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
   'B' : ['A', 'B', 'C'] * 4,
   'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
   'D' : np.random.randn(12),
   'E' : np.random.randn(12)})

# 生成数据透视表
pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
"""
C  bar foo
A B   
one A -0.773723 1.418757
 B -0.029716 -1.879024
 C -1.146178 0.314665
three A 1.006160 NaN
 B NaN -1.035018
 C 0.648740 NaN
two A NaN 0.100900
 B -1.170653 NaN
 C NaN 0.536826
"""

时间序列

pandas 拥有既简单又强大的频率变换重新采样功能,下面的例子从 1次/秒 转换到了 1次/5分钟:

rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.resample('5Min', how='sum')
"""
2012-01-01 25083
Freq: 5T, dtype: int32
"""

# 本地化时区表示
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
"""
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64
"""

ts_utc = ts.tz_localize('UTC')
"""
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64
"""

# 转换为周期
ps = ts.to_period()

# 转换为时间戳
ps.to_timestamp()

分类

df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

# 将 raw_grades 转换成 Categoricals 类型
df["grade"] = df["raw_grade"].astype("category")
df["grade"]
"""
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
"""

# 重命名分类
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

# 根据分类的顺序对数据进行排序
df.sort("grade")
"""
 id raw_grade  grade
5 6   e very bad
1 2   b  good
2 3   b  good
0 1   a very good
3 4   a very good
4 5   a very good
"""

作图

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot()

数据IO

# 从 csv 文件读取数据
pd.read_csv('foo.csv')

# 保存到 csv 文件
df.to_csv('foo.csv')

# 读取 excel 文件
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

# 保存到 excel 文件
df.to_excel('foo.xlsx', sheet_name='Sheet1')

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能带来一定的帮助,如果有疑问大家可以留言交流。

Python 相关文章推荐
ptyhon实现sitemap生成示例
Mar 30 Python
Python里隐藏的“禅”
Jun 16 Python
详解Python中内置的NotImplemented类型的用法
Mar 31 Python
利用python实现xml与数据库读取转换的方法
Jun 17 Python
CentOS7.3编译安装Python3.6.2的方法
Jan 22 Python
python psutil库安装教程
Mar 19 Python
Python Socket编程之多线程聊天室
Jul 28 Python
python3 实现对图片进行局部切割的方法
Dec 05 Python
pandas和spark dataframe互相转换实例详解
Feb 18 Python
如何通过Python3和ssl实现加密通信功能
May 09 Python
tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this T
Jun 22 Python
python主要用于哪些方向
Jul 05 Python
使用pyecharts无法import Bar的解决方案
Apr 23 #Python
详解Python3中字符串中的数字提取方法
Jan 14 #Python
win7上python2.7连接mysql数据库的方法
Jan 14 #Python
python实现字符串连接的三种方法及其效率、适用场景详解
Jan 13 #Python
python实现读取并显示图片的两种方法
Jan 13 #Python
Python中的连接符(+、+=)示例详解
Jan 13 #Python
Python中datetime模块参考手册
Jan 13 #Python
You might like
CodeIgniter框架过滤HTML危险代码
2014/06/12 PHP
学习PHP session的传递方式
2016/06/15 PHP
PHP设计模式之观察者模式定义与用法分析
2019/04/04 PHP
执行iframe中的javascript方法
2008/10/07 Javascript
使用jQuery+HttpHandler+xml模拟一个三级联动的例子
2011/08/09 Javascript
JS 如果改变span标签的是否隐藏属性
2011/10/06 Javascript
JS Jquery 遍历,筛选页面元素 自动完成(实现代码)
2013/07/08 Javascript
jquery如何判断某元素是否具备指定的样式
2013/11/05 Javascript
Javascript 拖拽的一些高级的应用(逐行分析代码,让你轻松了拖拽的原理)
2015/01/23 Javascript
JS实用的动画弹出层效果实例
2015/05/05 Javascript
基于javascript实现浏览器滚动条快到底部时自动加载数据
2015/11/30 Javascript
用window.onerror捕获并上报Js错误的方法
2016/01/27 Javascript
Node.js 应用跑得更快 10 个技巧
2016/04/03 Javascript
用jquery获取自定义的标签属性的值简单实例
2016/09/17 Javascript
利用Jquery实现几款漂亮实用的时间轴(附示例代码)
2017/02/15 Javascript
100多个基础常用JS函数和语法集合大全
2017/02/16 Javascript
Javascript 详解封装from表单数据为json串进行ajax提交
2017/03/29 Javascript
微信小程序页面间通信的5种方式
2017/03/31 Javascript
JS实现数组按升序及降序排列的方法
2017/04/26 Javascript
Angular 4.0学习教程之架构详解
2017/09/12 Javascript
基于BootStrap的文本编辑器组件Summernote
2017/10/27 Javascript
微信小程序实现蒙版弹窗效果
2018/11/01 Javascript
JavaScript中.min.js和.js文件的区别讲解
2019/02/13 Javascript
Javascript类型判断相关例题及解析
2020/08/26 Javascript
python进阶教程之函数对象(函数也是对象)
2014/08/30 Python
Python使用Beautiful Soup包编写爬虫时的一些关键点
2016/01/20 Python
浅谈Python里面小数点精度的控制
2018/07/16 Python
对python指数、幂数拟合curve_fit详解
2018/12/29 Python
pyshp创建shp点文件的方法
2018/12/31 Python
在python中对变量判断是否为None的三种方法总结
2019/01/23 Python
Python比较配置文件的方法实例详解
2019/06/06 Python
浅谈Python中的异常和JSON读写数据的实现
2020/02/27 Python
次世代生活态度:Hypebeast
2018/07/05 全球购物
七一表彰活动方案
2014/01/18 职场文书
C++程序员求职信
2014/05/07 职场文书
医学检验专业自荐信
2014/09/18 职场文书